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We continue recent work (Mallios and Raptlaternational Journal of Theoretical
Physic40, 1885, 2001; in press) and formulate the gravitational vacuum Einstein equa-
tions over a locally finite space-time by using the basic axiomatics, techniques, ideas,
and working philosophy of Abstract Differential Geometry. The main kinematical struc-
ture involved, originally introduced and explored in (Mallios and Rajhtigrnational
Journal of Theoretical Physic40, 1885, 2001), is a curved principal finitary space-
time sheaf of incidence algebras, which have been interpreted as quantum causal sets,
together with a nontrivial locally finite spin-Loretzian connection on it which lays the
structural foundation for the formulation of a covariant dynamics of quantum causality
in terms of sheaf morphisms. Our scheme is innately algebraic and it supports a cate-
gorical version of the principle of general covariance that is manifestly independent of
a background@*°-smooth space-time manifoldl. Thus, we entertain the possibility

of developing a “fully covariant” path integral-type of quantum dynamical scenario for
these connections that avoids ab initio various problems that such a dynamics encoun-
ters in other current quantization schemes for gravity—either canonical (Hamiltonian)
or covariant (Lagrangian)—involving an external, base differential space-time mani-
fold, namely, the choice of a diffeomorphism-invariant measure on the moduli space of
gauge-equivalent (self-dual) gravitational spin-Lorentzian connections and the (Hilbert
space) inner product that could in principle be constructed relative to that measure in
the quantum theory—the so-called “inner product problem,” as well as the “problem
of time” that also involves the Diff{1) “structure group” of the classic&l*™-smooth
space-time continuum of general relativity. Hence, by using the inherently algebraico—
sheaf-theoretic and calculus-free ideas of Abstract Differential Geometry, we are able
to draw preliminary, albeit suggestive, connections between certain nonperturbative
(canonical or covariant) approaches to quantum general relativity (e.g., Ashtekar’s new
variables and the loop formalism that has been developed along with them) and Sorkin
etal’s causal set program. As it were, we “noncommutatively algebraize,” “differential
geometrize” and, as a result, dynamically vary causal sets. At the end, we anticipate
various consequences that such a scenario for a locally finite, causal and quantal vacuum
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Einstein gravity might have for the obstinate (from the viewpoint of the smooth contin-
uum) problem o*°-smooth space-time singularities.

KEY WORDS: quantum gravity; causal sets; differential incidence algebras of lo-
cally finite partially ordered sets; abstract differential geometry; sheaf theory; sheaf
cohomology; category theory.

...the theory that space is continuous is wrong, because we get
infinities[viz. “singularities”] and other similar difficulties. . [while]
the simple ideas of geometry, extended down to infinitely small, are
wrong..."

—Feynman (1992)

...at the Planck-length scale, classical differential geometry is
simply incompatible with quantum theary [so that] one will not
be able to use differential geometry in the true quantum-gravity
theory...”

—Isham (1991)

1. PROLOGUE CUM PHYSICAL MOTIVATION

In the last century, the path that we have followed to unite guantum mechanics
with general relativity into a coherent, both technically and conceptually, quantum
theory of gravity has been a long and arduous one, full of unexpected twists and
turns, surprising detours, branchings, and loops—even disheartening setbacks and
impasses, as well as hopes, disappointments, or even disillusionments at times.
Certainly though, the whole enterprize has been supported and nurtured by im-
pressive technical ingenuity, and creative imagination coming from physicists and
mathematicians alike. All in all, it has been a trip of adventure, discovery, and in-
tellectual reward for all who have been privileged to be involved in this formidable
quest. Arguably then, the attempt to arrive at a conceptually sound and “calcula-
tionally” finite quantum gravity must be regarded and hailed as one of the most
challenging and inspired endeavors in theoretical physics research that must be
carried over and be zestfully continued in the new millenium.

Admittedly, however, a cogent theoretical scenario for quantum gravity has
proved to be stubbornly elusive not least because there is no unanimous agreement
about what ought to qualify as the “proper” approach to a quantum theoresis of
space-time and gravity. Generally speaking, most of the approaches fall into the
following three categoriés

4These categories should by no means be regarded as being mutually exclusive or exhaustive, and
they certainly reflect only these authors” subjective criteria and personal perspective on the general
characteristics of various approaches to quantum gravity. This coarse classification will be useful for
the informal description of our finitary and causal approach to Lorentzian vacuum quantum gravity
to be discussed shortly.
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1. General relativity conservativd he general aim of the approaches falling
into this category is to quantize classical gravity somehow. Thus, the
mathematical theory on which general relativity—in fact, any field theory
whether classical or quantum—is based, namely, the differential geom-
etry of C>*°-manifolds (i.e., the usual differential calculus on manifolds)
is essentially retainédand it is used to treat the gravitational field quan-
tum field theoretically. Both the nonperturbative canonical and covariant
(i.e., path integral or “action-weighed sum-over-histories”) approaches
to “guantum general relativity,” topological quantum field theories, as
well as, to a large extent, higher dimensional (or extended objects’) the-
ories like (super) string and membrane schemes arguably belong to this
category.

2. Quantum mechanics conservatiiéne general spirit here is to start from
general quantum principles such as algebraic operationality, noncommu-
tativity, and finitism (“discreteness”) about the structure of space-time
and its dynamics, and then try to derive somehow general relativistic at-
tributes, as it were, from within the quantum framework. Such approaches
assume up-front that quantum theory is primary and fundamental, while
the classical geometrical smooth space-time continuum and its dynamics
secondary and derivative (emergent) from the deeper quantum dynamical
realm. For instance, Connes’ noncommutative geometry (Connes, 1994;
Kastler, 1986) and, perhaps more notably, Finkelstein’s quantum relativity
(Finkelstein, 1996; Selesnick, 1998pay be classified here.

3. IndependentApproaches in this category assume neither quantum me-
chanics nor general relativity as a fundamental, “fixed” background the-
ory relative to which the other must be modified to suit. Rather, they start
independently from principles that are neither quantum mechanical nor
general relativistic per se, and proceed to construct a theory and a suitable
mathematical formalism to accompany it that later may be interpreted as
a coherent amalgamation (or perhaps even extension) of both. It is in-
evitable with such “iconoclastic” schemes that in the end both general
relativity and quantum mechanics may appear to be modified to some
extent. One could assign to this category Penrose’s combinatorial spin
networks (Penrose, 1971; Rovelli and Smolin, 1995) and its current rel-
ativistic spin-foam descendants (Baez, 1998; Barrett and Crane, 2000;
Perez and Rovelli, 2001), Regge’s homological space-time triangulations
and simplicial gravity (Regge, 1961), as well as Sordiml’s causal sets

5That is, in general relativity space-time is modelled aftéPasmooth manifold. Purely mathemat-
ically speaking, approaches in this category could also be callédsmoothness or differential
manifold conservative.”

61n fact, Finkelstein maintains that “all is quantum. Anything that appears to be classical has not yet
been resolved into its quantum elements” (David Finkelstein, private communication).
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(Bombelli et al,, 1987; Rideout and Sorkin, 2000; Sorkin, 1995, 1997,
manuscript in preparation).

It goes without saying that this is no place for us to review in any detail the ap-
proaches mentioned aboveRather, we wish to continue a finitary, causal, and
quantal sheaf-theoretic approach to space-time and vacuum Lorentzian gravity
that we have already started to develop in (Mallios and Raptis, 2001, in press).
This approach, as we will argue subsequently, combines characteristics from all
three categories above and, in particular, the mathematical backbone which sup-
ports it, Abstract Differential GeometrfADG) (Mallios, 1998a,b; 2001a, 2002,
manuscript in preparation), was originally conceived to evadeCtiesmooth
space-time manifolt (and consequently its diffeomorphism group Difff) un-
derlying (and creating numerous problems for) the various approaches in 1. For, it
must be emphasized up-froMDG is an axiomatic formulation of differential ge-
ometry which does not use afi-notion from the usual differential calculus—the
classical differential geometry of smooth manifolds

To summarize briefly what we have already accomplished in this direttion,
in Mallios and Raptis (2001) we combined ideas from the second author’s work
onfinitary space-time sheaveffinsheaves) (Raptis, 2000b) and on an algebraic
guantization scenario for Sorkin’s causal sets (causets) (Raptis, 2000a) with the
first author's ADG (Mallios, 1998a,b), and we arrived at a locally finite, causal,
and quantal version of the kinematical structure of Lorentzian gravity. The lat-
ter pertains to the definition of a curved principal flnsh@ﬁfof incidence Rota
algebras modellinguantum causal sefgausets) (Raptis, 2000a), having for struc-
ture group a locally finite version of the continuous orthochronous Lorentz group
S, 3)' of local symmetries (isometries) of general relativity, together with a
nontrivial (i.e., nonflat) locally finitso(1, 3)T =~ sl(2, C);-valued spin-Lorentzian
connectionf)i 10 which represents the localization or gauging and concomitant

For reviews of and different perspectives on the main approaches to quantum gravity, the reader
is referred to (Isham, 1993; Ashtekar, 1994; Rovelli, 2001). In the last, most recent reference, one
notices a similar partition of the various approaches to quantum gravity into three classes called
covariant canonical, and sum-over-historieBhen one realizes that presently we assigned all these
three classes to category 1, since our general classification criterion is which approaches, like general
relativity, more-or-less preserveC&°-smooth base space-time manifold hence use the methods of
the usual differential geometry on it, and which do not. Also, by “covariant” we do not mean what
Rovelli does. “Covariant” for us is synonymous to “action-weighed sum-over-histories” or “path
integral.” Undoubtedly, there is arbitrariness and subjectivity in such denominations, so that the
boundaries of those distinctions are rather fuzzy.

8 For arecent, concise review of our work so far on this sheaf-theoretic approach to discrete Lorentzian
guantum gravity, as well as on its possible topos-theoretic extension, the reader is referred to Raptis
(2002). In particular, the topos-theoretic viewpointis currently being elaborated in Raptis (manuscript
in preparation).

9Throughout this paper, the epithets “finitary” and “locally finite” will be (used interchangeably.

10From Mallios and Raptis (2001) we note that only the gauge potemlabart of the reticular
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dynamical variability of the qausets in the sheaf due to a finitary, causal. and quan-
tal version of Lorentzian gravity in the absence of matter (i.e., vacuum Einstein
gravity). We also gave the following quantum particle interpretation to this reticu-
lar scheme: a so-callexhusor—the elementary particle of the field of dynamical
guantum causality represented dy—was envisioned to dynamically propagate

in the reticular curved space-time vacuum represented by the finsheaf of qausets
under the influence of finitary Lorentzian (vacuum) quantum gravity.

In the sequel (Mallios and Raptis, in press), by using the universal con-
structions and the powerful sheaf-cohomological tools of ADG together with the
rich differential structure with which the incidence algebras modelling qausets
are equipped (Raptis, 2000a; Raptis and Zapatrin, 2000, 2001; Zapatrin, 1996,
in press), we showed how basic differential geometric ideas and results usually
thought of as being vitally dependent ¢f°-smooth manifolds for their real-
ization, as for example the standard Cech-de Rham cohomology, carry through
virtually unaltered to the finitary regime of the curved finsheaves of qausets. For
instance, we gave finitary versions of importéfit-theorems such as de Rham'’s,
Weil's integrality, and the Chern-Weil theorem and, on the basis of certain robust
results from the application of ADG to the theory of geometric (pre)quantization
(Mallios, 1998b, 1999, 2001b), we carried out a sheaf-cohomological classifica-
tion of the associated line sheaves bearing the finitary spin-Lorentzwhose
guanta were referred to as causons above—the elementary (bosonic) particles car-
rying the dynamical field of quantum causality whose (local) states correspond
precisely to (local) sections of those line sheaves. By this virtually complete tran-
scription of the basi€>-constructions, concepts, and results to the locally finite
and quantal realm of the curved finsheaves of gausets, we highlighted that for their
formulation the classical smooth background space-time continuum is essentially
of no contributing value. Moreover, we argued that sincetesmooth space-
time manifold can be regarded as the main culprit for the singularities that plague
general relativity as well as for the weaker but still troublesome infinities that assail
the flat quantum field theories of matter, its evasion—especially by the finitistic—
algebraic means that we employed—should be most welcome for the formulation
of a “calculationally” and, in a sense to be explained later, “inherently finite” and
“fully covariant” quantum theory of gravity.

With respect to the aforementioned three categories of approaches to quan-
tum gravity, our scheme certainly has attributes of 2 as it employs finite dimen-
sional nonabelian incidence algebras to model (dynamically variable) gausets in

Di=d+Ais spin-Lorentzian proper (i.e., discrete(1, 3)T =~ sl(2, C);-valued), but here too we

will abuse terminology and refer to e|th@. or its partAI as “the spin-Lorentzian connection.”

(The reader should also note that the arrows over the various symbols will be justified in the sequel
in view of the causal interpretation that our incidence algebra finsheaves have; while the subscript
“i” is the so-called “finitarity,” “resolution,” or “localization index” (Mallios and Raptis, 2001, in
press; Raptis, 2000b), which we will also explain in the sequel.)
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the stalks of the relevant finsheaves, which gqausets have a rather natural quantum-
theoretic (because algebraico—operational) physical interpretation (Mallios and
Raptis, 2001; Raptis, 2000a; Raptis and Zapatrin, 2000, 2001). It also has traits of
category 3 since the incidence algebras are, by definition, of combinatorial and “di-
rected simplicial” homological character and, in particular, Sorkin’s causet theory
was in effect its principal physical motivation (Mallios and Raptis, in press; Raptis,
2000a). Finally, regarding category 1, the purely mathematical, ADG-based aspect
of our approach was originally motivated by a need to showahadhe “intrin-

sic” differential mechanism of the usual calculus on manifolds is independent of
C*-smoothness, in fact, of any notion of “space” supporting the usual differential
geometric concepts and constructighghus entirely avoid, or better, manage to
integrate or “absorb” into the (now generalized) abstract differential geometry, the
“anomalies” (i.e., the singularities and other “infinity-related pathologies”) that
plague the classic&l™-smooth continuum case (Mallios, 1998, 2002). Arguably
then, our approach is an amalgamation of elements from 1-3.

Let us now move on to specifics. In the present paper we continue our work in
Mallios and Raptis (2001, in press) and formulate the dynamical vacuum Einstein
equations inP. On the one hand, this extends our work on the kinematics of a
finitary and causal scheme for Lorentzian quantum gravity developed in Mallios
and Raptis (2001) as it provides a suitable dynamics for it, and on the other, it
may be regarded as another concrete physical application of ADG to the locally
finite, causal, and quantum regime, and all thispite of theC*-smooth space-
time manifoldin accord with the spirit of Mallios and Raptis (in press). Our work
here is the second physical application of ADG to vacuum Einstein gravity, the
first having already involved the successful formulation of the vacuum Einstein
equations over spaces with singularities concentrated on arbitrary closed nowhere
dense sets—arguabijne most singular spaces when viewed from the featureless
C*>-smooth space-time manifold perspective (Mallios, 2001a, 2002; Mallios and
Rosinger, 1999, 2001; Rosinger, in press).
11Thus, as we will time and again stress in the sequel, with the development of ADG we have come to

realize that the main operative role of tG&°-smooth manifold is to provide us widconvenient

(and quite successful in various applications to both classical and quantum pHysiés)no means
unique differential mechanism, namely, that accommodated by the alg&B(M) of infinitely
differentiable functions “coordinatizing” the (points of the) differential manifMd However, the

latter algebra’s pathologies in the form of singularities made us ponder on the question whether the
differential mechanism itself is “innate” 16°°(M) and the manifold supporting these “generalized
arithmetics” (this term is borrowed straight from ADG). As alluded to above, ADG’s answer to the
latter is an emphaticNg’ (Mallios, 1998a,b, 2002). For example, one can do differential geometry
over very (in factthe mosg singular from the point of view of thé>°-smoothM spaces and their
“arithmetic algebras,” such as Rosinger’s non-linear distributions—the so-called differential algebras
of generalized functions) (Mallios and Rosinger, 1999, 2001; Rosinger, in press). As a matter of fact,
the last two papers, together with the duet (Mallios and Raptis, 2001, in press), are examples of

two successful applications of ADG proving its main point thaifférentiability is independent of
C*-smoothnesqsee slogan 2 at the end of Mallios and Raptis (in press)).
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The paper is organized as follows. In the following section we recall the basic
ideas about connections in ADG focusing our attention mainly on Yang—Mills (Y-
M) and Lorentzian connections on finite dimensional vector sheaves, on principal
sheaves (whose associated sheaves are the aforementioned vector sheaves), their
curvatures, symmetries, and (Bianchi) identities, as well as the affine spaces that
they constitute. In section 3 we discuss the connection-based picture of gravity—
the way in which general relativity may be thought of as a Y-M-type of gauge
theory in the manner of ADG (Mallios, manuscript in preparation). Mainly on
the basis of the literature, (Mallios, 2001), we present vacuum Einstein geavity °
la ADG and explore the relevant gravitational moduli spaces of spin-Lorentzian
connections. In section 4 we remind the reader of some basic kinematical features
of our curved principal finsheaves of gausets from Mallios and Raptis (2001, in
press) and, in particular, on the basis of recent results of Papatriantafillou (2000,
2001) and Vassiliou (1994, 1999, 2000), we describe in a categorical way in-
verse (projective) and direct (inductive) limits of such principal finsheaves and
their reticular connections. We also comment on the use of thek¢alnd com-
plex (C) number fields in our manifold-free, combinatory-algebraic theory, and
compare it with some recent critical remarks of (Isham, 2002) about the a pri-
ori assumption—one that is essentially based on the classical manifold model of
space-time—of th&® andC continua in conventional quantum theory @s#s its
application to quantum gravity. Section 5 is the focal area of this paper as it presents
a locally finite, causal, and quantal version of the vacuum Einstein equations for
Lorentzian gravity. The idea is also entertained of developing a possible covariant
quantization scheme for finitary Lorentzian gravity involving a path integral-type
of functional over the moduli spacé; /G; of all reticular gauge-equivalent spin-
Lorentzian connectiongl;. On the basis of the “innate” finiteness of our model,
we discuss how such a scenario may on the one hand avoid ab initio the choice of
measure fot4; that troubles the continuum functional integrals over the infinite
dimensional, non-linear and with a “complicated” topology moduli spé&i’é/g
of smooth, (self-dual) Lorentzian connections in the standard covariant approach
to the quantization of (self-dual) Lorentzian gravity, and on the other, how our
up-front avoiding of Diff(M) may cut the “Gordian knot” that the problems of
time and of the inner product in the Hilbert space of physical states present to the
nonperturbative canonical approach to quantum gravity based on Ashtekar’'s new
variables and the holonomy (Wilson loop) formalism associated with them. Ulti-
mately, all this points to the fact thatir theory is genuinelg>°-smooth space-time
background independeand, perhaps more importanthggardless of the peren-
nial debate whether classical (vacuum) gravity should be quantized covariantly
or canonically This makes us ask—in fact, altogether doubt—whether quantizing
classical space-time and gravity by using the constructions and techniques of the
usual differential geometry of smooth manifolds is the “right” approach to quan-
tum space-time and gravity, thus align ourselves more with the categories 2 and 3
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above, and less with 1. As a matter of fact, and in contradistinction to the “icono-
clastic” approaches in category 3 (most notably, in contrast to the theory of causal
sets), in developing our entirely algebraico—sheaf-theoretic approach to finitary
Lorentzian quantum gravity based on ADG, we have come to question altogether
whether the notion of (an inert geometrical background) “space-time”—whether
it is modelled after a continuous or a discrete base space—makes any physical
sense in the ever dynamically fluctuating quantum deep where the vacuum is
“filled” solely by (the dynamics of) causons and where there is no “ambient” or
surrounding space-time that actively participates into or influences in any way that
dynamicst? We thus infer that both our finitary vacuum Einstein equations for the
causon and the path integral-like quantum dynamics of our reticular (self-dual)
spin-Lorentzian connection&f” is “genuinely,” or better, “fully” covariant since

they both concern directly and solely the objects (the quanta of causality, i.e., the
dynamical connectiond;) that live on that base “space(time),” and not at all that
external, passive, and dynamically inert “space(time) arena” itself. We also make
comments on geometric (pre) quantization (Mallios, 1998b, 1999, 2001b) in the
light of our application here of ADG to finitary and causal Lorentzian gravity
(Mallios and Raptis, in press) and we stress that our scheme may be perceived
as being, in a strong sense, “already” or “inherently” quantum, meaning that it is
in no need of the (formal) process of quantization of the corresponding classical
theory (here, general relativity orC&°-smooth space-time manifold). This seems

to support further our doubts about the quantization of classical space-time and
gravity mentioned above. Furthermore, motivated by the “full covariance” and
“inherent quantumness” of our theory, we draw numerous close parallels between
our scenario and certain ideas of Einstein about the so-called (postgeneral relativ-
ity) “new ether” concept, the unitary field theory that goes hand in hand with the
latter, but more importantly, about the possible abandonement altogether, in the
light of singularities and quantum discontinuities, of this continuous field theory
and theC*°-space-time continuum supporting it f@purely algebraic description

of reality (Einstein, 1956). In toto, we argue that ADG, especially in its finitary
and causal application to Lorentzian quantum gravity in the present paper, may
provide the basis for therganic(Einstein, 1949)algebraic(Einstein, 1956) the-

ory that Einstein was searching for in order to replace the multiple assailed by
unmanageable singularities, unphysical infinities, and other anomaliles geometric
space-time continuum of macroscopic physics. At the same time, we will maintain
that this abandonement of the space-time manifold for a more finitistic—algebraic
theory can be captured to a great extent by the mathematical notion of Gel'fand

120f course, we will see that there is a base topological “localization space”—a stage on which we
solder our algebraic structures, but this space is of an ether-like character, a surrogate scaffolding of
no physical significance whatsoever as it does not actively engage into the quantum dynamics of the
causons—the quanta of the fieltd of guantum causality that is localized (gauged) and dynamically
propagates on “it.”
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duality—a notion that permeates the general sheaf-theoretic methods of ADG
effectively ever since its inception (Mallios, 1986, 1992, 1998a) as well its partic-
ular finitary, causal, and quantal applications thereafter (Raptis and Zapatrin, 2000,
2001; Raptis, 2000a,b, 2001a,b, 2002; Mallios and Raptis, 2001, in press). The
paper concludes with some remarks@f-smooth singularities—some of which
having already been presented in a slightly different, purely ADG-theoretic, guise
in Mallios (2002)—that anticipate a paper currently in preparation (Mallios and
Raptis, manuscript in preparation).

2. CONNECTIONS IN ABSTRACT DIFFERENTIAL GEOMETRY

Connectionsalias“generalized differentials,” are the central objects in ADG
which purports to abstract from, thus axiomatize and effectively generalize, the
usual differential calculus af®-manifolds. In this section we give a brigfsung
of both the local and global ADG-theoretic perspective on linear (Koszul), pseudo-
Riemannian (Lorentzian) connections and their associated curvatures. For more
details and completeness of exposition, the reader is referred to the literature
Mallios (1998a,b, manuscript in preparation).

2.1. Basic Definitions About Linear Connections

The main notion here is that afifferential triad ¥ = (Ax, 3, Qx), which
consists of a she#fyx of (complex) abelian algebrasover an in-generarbitrary
topological space Xalled thestructure sheaf or the sheaf of coefficienfghe
triad® a sheafQ2 of (differential) A-modulesQ over X, and aC-derivationd
defined as theheaf morphism

0:A—=>Q Q)
which isC-linear and satisfies Leibniz’s rule
(s-t)=s-0(t)+t-9(s) (2)

forany local sectionsandt of A (i.e.,s,t € ['(U, A) = A(U), withU < X open).
It can be shown that the usual differential operatan (1) above ighe prototype
of aflat A-connectionMallios, 1998a,b).

13The pair (X, Ax) is called aC-algebraized spagavhereC corresponds to the constant sh€sf
of the complex number€ over X, which is naturally injected intéx (i.e.,C-> Ax and, plainly,
C =T(X,C) =C(X)). It is tacitly assumed that for every open &étin X, the algebraA(U)
of continuous local sections &x is a unital, commutative, and associative algebra dveft
must be noted here however that one could start wihalgebraized spac&(= R, C) in which
the structure sheahx would consist of unital, abelian, and associative algebras over the fields
K = R, C, respectively. Here we have just fix&dto the complete field of complex numbers, but in
the future we are going to discuss also the real case. Also, in eitheAgaseassumed to béne
In the sequel, when it is rather clear what the base topological spagene will omit it from Ax
and simply writeA.
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The aforementioned generalization of the usual differential opedatman
(abstractA-connectiorD involves two steps emulating the definitiondébove.
First, one identifiesD with a suitable C-linear) sheaf morphism as in (1), and
second, one secures that the Leibniz condition is satisfiel},kas in (2) above.
So, given a differential triad = (A, 9, §2), let £ be anA-module sheaf orX.
Then, the first step corresponds to definibgs a map

Dif- EQRNZN A E = QE) 3)

which is aC-linear morphism of the complex vector sheaves involved, while the
second, that this map satisfies the following condition

D(-S) = a-D(S) +s® d(a) (4)

fora €e A(U),se £(U) =T(U, &), andU openinX.

The connectiorD as defined above may be coinedkaszul linear con-
nectionand its existence on the vector she¢afs crucially dependent on both
the base spac¥ and the structure she#f. For X a paracompactand Haus-
dorff topological space, and fokx a fine sheaf on it, the existence @ is
well secured, as for instance in the caseC6f-smooth manifolds (Mallios,
1998a,b).

2.1.1. The Local Form ab

Given a local gauge = {U; (& )o<i<n_1} Of the vector sheaf of rankn,
every continuous local sectiane £(U)(U € U) can be expressed as a unique
superposition) ", s& with coefficientss in A(U). The action ofD on these
sections reads

D(s) =) (sD(e)+& ®d(s)) )
i=1
with
De)=) a®w;, 1<i, j=<n 6)
i=1

14We recall from the literature (Mallios, 1998a,b; Mallios and Raptis, in press) that in ADS,
{Uq}eel is called alocal frameor a coordinatizing open cover pbr evena local choice of basis
(or gauge) for€. Thegs ineY are local sections of (i.e., elements of (U, £)) constituting a
basis of€(U). We also mention that for th&-module sheaf, regarded as a vector sheaf of rank
one has by definition the following|y -isomorphisms€|y = A"y = (AJy)" and, concomitantly,
the following equalities sectionwis€(U) = A"(U) = A(U)" (with A" then-fold Whitney sum of
A with itself). Thus,€ is a locally freeA-module of finite rank -r-an appellation synonymous to
vector sheafn ADG (Mallios, 1998). Fom = 1, the vector sheaf is called aline sheafand it is
symbolized byL.
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for some uniquew;; € Q(U) (1 <i, j <n), which means thatw = (w;j €
Mn(2(U)) = Mp(22)(U) is ann x n matrix of sections of local 1-forms. Thus, (5)
reads via (6)

il w
DE =Y e ®@E)+Y §ar =@+ ) @)
i=1 i=1

So that, in toto, every connectidp can be written locally as
D=0+ow (8)

with (8) effectively expressing the procedure commonly known in physilceas
izing or gaugingthe usual (flat) differentiad to the (curvedfovariant derivative
D. Thus, the (non-flaty part of D, calledthe gauge potentiah physics, mea-
sures the deviation from differentiating flatly (i.e., By, when one differentiates
“covariantly” by D.15

2.1.2. Local Gauge TransformationsDf

We investigate here, in the context of ADG, the behavior of the gauge potential
part.A of D under local gauge transformations—the so-catitadsformation law
of potentialsn Mallios (1998a,b).

Thus, let€ be anA-module or a vector sheaf of rankLete¥ = {U;e_1 ,}
and fV = {V; fi_1_n} be local gauges of over the open sets andV of X
which, in turn, we assume have nonempty intersedtlan V. Let us denote by
g = (gi;) the followingchange of local gauge matrix

n

fi Zzgijﬁ‘u (9)

i=1

which, plainly, is a local (i.e., relative 1d N V) section of the “natural” structure
group sheaffL(n, A) of £¥—that is,g;j € GL(n, A(U NV)) =GL(n, A)(UN
V).

Without going into the details of the derivation, which can be found in
(Mallios, 1998), we note that under such a local gauge transformgtibie gauge

151n the sequel we will symbolize the gauge potential parDoin (8) by A instead ofw to be in
agreement with our notation in the previous papers (Mallios and Raptis, 2001, in press), as well as
with the standard notation for the spin-Lorentzian connection in current Lorentzian quantum gravity
research (Ashtekar and Isham, 1992; Ashtekar and Lewandowski, 1994, 1995; Baez and Muniain,
1994).

16\We will present some rudiments of structure group (or princip@-)isheaves of associated vector
sheave< in the next subsection. One may recognizé(n, A) above as the local version of the
automorphism group sheafut€ of £. The adjective “local” here pertains to the fact mentioned
earlier that ADG assumes thétis locally isomorphic toA".
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potential partv = A of D in (8) transforms as follows
A =g tAg+gtag (10)

a way we are familiar with from the usual differential geometry of the smooth
fiber bundles of gauge theories. For completeness, it must be noted here that
in (10),A = (Ajj) € M(2'(U)) = My(Q)(U) and A’ = (A];) € M(2(V)) =
Mn(22Y)(V). The transformation ofd under local gauge changes is calktine

or inhomogeneoum the usual gauge-theoretic parlance precisely because of the
termg~19g. We will return to this affine term in subsection 2.3 and subsequently in
section 5 where we will comment on the essentially nongeometrical (i.e., nontenso-
rial) character of connection. Also, anticipating our discussion of moduli spaces
of gauge-equivalent connections in the next section, we note that (10) expresses

an equivalence relation®” between the gauge potentialsand.A’.

2.2. Pseudo-Riemannian (Lorentzian) Metric Connections

In this subsection we are interested in endowing a vector ghefdfnite rank
n € Nwith an indefiniteA-valued symmetric inner produpt and, concomitantly,
studyA-connection® that are compatible with the (indefinite) metgiassociated
with p—the so-callednetric connectionsWith an eye towards the applications
to Lorentzian (quantum) gravity in the sequel, we are particularly interested in
metric Ds relative to Lorentzian metrics of signature d@gé& (—, +, +, -+ ).
Also, continuing our work (Mallios and Raptis, 2001), which dealt vpitimcipal
Lorentzian finsheaves of qauset® are interested in thgroup sheavesgiuta (£)
of A-automorphisms of —the principal sheaves of structure symmetrie<df
In the case of a real (i.eK = R and R-algebraized space) Lorentzian vector
sheaf €, p) of rank 412 the stalks of the correspondiggsheaves will “naturally”
be assumed to host the gro§8X1, 3)'—the orthochronous Lorentz group of

17Commonly known ag-sheaves in the mathematical literature (Mallios, 1998a).

18\\e would like to declare up front that in this paper we provide no argument whatsoever for assuming
that the dimensionality (rank) of our vector sheaves is the “empirical” (or better, “conventional”)
4 of the space-time manifold of “macroscopic experience” (or better, of the classical theory). In the
course of this work the reader will realize that all our constructions are manifestly independent of
the classical four-dimensional, locally Euclide@?i?-smooth, Lorentzian space-time manifold of
general relativity so that we will time and again doubt whether the latter, and the host of (mathemati-
cal) structures that classically it is thought of as carrying (e.qg., its uncountably infinite cardinality of
events, its dimensionality, its topological, differential, and metric structures), is a physically meaning-
ful concept. For example, we will maintain that dimensionality and the metric are free mathematical
choices of (i.e., fixed by) the theorist and not Nature’s own, while that the topology and differential
structure are inherent in the dynamical objects (fields) that may be thought of as living and prop-
agating on “space-time,” not by that inert background “space-time” itself, which is devoid of any
physical meaning. Moreover, all this will be expressed in an algebraic, locally finite setting quite
remote from the uncountable continuous infinity of events of the manifold.
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(local) isometries ofg, p) which, in turn, is locally isomorphic to the spin-group
SL(2, C).*® We thus catch a first glimpse of the spin-Lorentzian connections con-
sidered in the context of curved finsheaves of qausets in Mallios and Raptis (2001),
which will be dealt with in more detail in section 4.

Thus, let€ be a vector sheaf. By aA-valued pseudo-Riemannian inner
productp on & (over X) we mean aheafmorphism

p:EDE—A (11)

which is (i) A-bilinear between theéA-modules concerned, (i) symmetric (i.e.,
o(s, 1) = p(t, s),s,t € £(U)) and of indefinite signature, and (itrongly non-
degenerateThat is, we assume tha(s, t), for any two local sections andt in
£(U),20 is given via the canonical isomorphism

1=

gxgr (12)

betweerf and its duat*, as

p(S)(t) = p(s, 1) (13)

with (12) being true up to aA-isomorphismn#!

We further assume that for the vector sh€#éf finite rankn € N) endowed
with the A-connectionD, the vector sheaf in the given differential triadt =
(A, 9, Q) is the dual of€ appearing in (12) (i.eQ2 = £* = Homa (&, A)). Thus,

191n the sense that their corresponding Lie algebras are isomogatis:3)' ~ si(2, C) (Mallios and
Raptis, 2001).

20|t is important to notice here that the-metric p is not a (bilinear) map assigned to the points of
the base spack per se (which is only assumed to be a topological, not a differential, let alone a
metric, space), but to the fibers (stalks) of the relevant module or vector sheaves which are inhabited
by the geometrical objects that live ot As noted in a previous footnote, in our scheme, metric
and, as we shall see later, topological and differential properties concern the objects that live on
“space(time),” not the supporting space(time) itself. This recalls Gauss’ and Riemann’s original
labors with endowing the linear fiber spaces tangent to a sphere with a bilinear quadratic form—a
metric. They ascribed a metric to the linear fibers, not to the supporting sphere itself which, anyway,
is manifestly “non-linear” (Mallios, 2002). What we highlight by these remarks isgpate(time)
carries no metricEqually important is to note that tievalued metrig is imposed on these objects
by usand it is intimately tied to (i.e., takes values in) our own measurements (arithmetiegsee
comparison between the notions of connection and curvature in subsection2i81%t a property
of space(time), which does not exist (in a physical sense) anyway; rather, itis an attribute related to our
own measurements of “it all.” These remarks are important for our subsequent physical interpretation
of ADG in its application to finitary Lorentzian quantum gravity in the next four sections. It is a
preliminary indication that in our theory the base space(time) is an ether-like “substance” without
any physical significance. See remarks about “gravity as a gauge theory” in the next section, about
the “physical insignificance” or “nonphysicality” of space-time in subsection 5.1.1 and about “the
relativity of differentiability” in subsection 6.2, as well as some similar anticipations in the literature
(Mallios and Raptis, 2001, in press).

21The epithet “strongly” to “nondegenerate” above indicates thiat(12) is alsconto.



1492 Mallios and Raptis

in line with the usual Christoffel theory (Mallios, 1998), we can defirlimear
connectionV, as follows

ViExE—-E (14)
acting sectionwise oéi(U) as
V(s t) = Vs(t) := D(t)(s) (15)

Now, one says thab is a pseudo-RiemanniaA-connectionor that it is
compatible with the indefinite metrig of the inner producp in (11), whenever it
fulfills the following two conditions:

e Riemannian symmetry/(s,t) — V(t,s) = [s, t];fors,t € E(U) and [, -]
the usual Lie bracket (product).

e Ricci identity 9(o(s, t))(u) = p(V(u, s),t) + p(s, V(u, t)); for s, t,u e
£(U), as usual.

In particular, for a Lorentziap and its associategi?> anA-connectiorD is
said to be compatible with the LorerAzinner producp on£22 when its associated
Christoffel V in (14) satisfies

V,=0 (16)

which, in turn, is equivalent to the followinghrizontality’ condition for the
canonical isomorphism in (12) relative to theconnectionDgg, ¢+ in the tensor
product vector shed@ffoma (£, £*) = (€ ®a E)* = £* ®a £*) induced by theA-
connectiorD on&

Dromu(e,e%(0) =0 (17)

Itis worth reminding the reader who is familiar with the usual theory that (17) above
implies that the Levi—CivitaA-connectionD induced by the LorentA-metric o
is torsion-free(Mallios, 2001).

2.2.1. Connections on (Lorentzian) Principal Sheaves

As mentioned in the beginning of this subsection, of special interest in our
study is the case of a (real) Lorentzian vector shéaf] of rank 4 whoseA-
automorphism sheafluta £t bearsG = L' := SO(1, 3)'—the orthochronous
p-preservingA-automorphisms of in its stalks?* £ is the principal sheaf

22With respect to docal (coordinate) gauge' = {U; (& )o<i<n_1} Of the vector sheaf of rank
n, p(e, &) = g = diag-1, +1,...) (Mallios, 1998a,b).

233uch a metric connection is commonly knowrlasi-Civita connection

240ne may wish to symbolize the paif (p) by £1, thus AutaE' by £*. In the sequel, when it is
clear from the context that we are talking about a Lorentzian vector ieaf (£, p), we may use
the symbolsS and&? for it interchangeably hopefully without confusion. For a general vector sheaf
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of structure symmetries @f'. In turn, £' is called the£*-associated vector
sheaf®

But let us first give a brief discussion of connections on principal sheaves °
la ADG and then focus on spin-Lorentzian (metric) connections. The reader will
have to wait until section 4 where we recall in more detail from (Mallios and
Raptis, 2001) the curved principal finisheave% of qausets and their nontrivial
connectionsﬁi. For the material that is presented below, we draw information
mainly from the literature (Vassiliou, 1994, 1999, 2000).

Let G be a sheaf of grougisover X. Let £ be anA-module ands a repre-
sentation of7 in &, that is to say, @ continuous group sheaf morphism

o:G— Autg (18)
effecting local (i.e.lU-wise in X) continuous left-actions af on £ as follows:
GU)xEU) — £:(9,v) = [a(@I(v), ve&U), gegU) (19

Also, by letting Q' be a sheaf of (first-order) differentiéi-modules overg,
QL&) = Q! @4 £asin(3), we definelie sheaf of group§?” to be the quadruple
(£, &, 0,0), whereL is anA-module of Lie algebra¥, o a representation of in
£, anda the following A-module sheaf morphism

3L — QYE) (20)

which reminds one of the flat connectiérin (1). , called theMaurer—Cartan
differential ofgG relative too,?° satisfies

d:(s-t)=0o(t1) s+ ot (21)

It must be noted here that in the same way that ADG—the differential geometry
of vector sheaves—represents an abstraction and a generalization of the usual
calculus on vector bundles ov&r-smooth manifolds to the effect thad calculus,

in the usual sense, is employed at @lallios, 1998a,b), Lie sheaves of groups

are the abstract analogues of the usual Lie groups that play a central role in the

&, Auta€ is a subsheaf ofndé€, in fact, for a given opetd C X, Auta(E)(U) ~ Enda(Eu)*—
the upper dot denotinigvertible endomorphisms. We thus write in generdiuta (£) = Aut€ :=
(Ende)°.

25Henceforth we will assume that every principal sheaf acts on the typical stalk of its associated sheaf
on the left (see below).

26By abuse of notation, and hopefully without confusing the reader, in the sequel we will also symbolize
the groups that dwell in the stalks @fby “G.”

27The reader should note that in the present paper we symbolize the gauge (structure) group of both
Y-M theory and gravity also by, hopefully without causing any confusion between it and the
abstract Lie sheaf of groups above.

28By assuming that the group shegfin (18) is a sheaf of Lie groups, we may taketo be the
corresponding sheaf of Lie algebras.

293 is also known as thigarithmic differential ofG.
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classical differential geometry of principal fiber bundles over differential manifolds
(Vassiliou, 1994, 1999, 2000).

Thus, letG be a Lie sheaf of groups as above. Formally speaking, by a
principal sheafP with structure groupg relative toG = (£, £, o, 3)° we mean
a quadruple®, £, X, 7) consisting of a sheaf of sef&*! such that

1. There is a continuous right action 6fon P.
2. There is an open gauge= {U,}.c; Of X and isomorphisms of sheaves
of sets (i.e., coordinate mappings)

¢ : Plu, — Llu, (22)
satisfying
¢a(s' g) = ¢a(s) - 0; Se P(Ua)v ge ﬁ(Ua) (23)

GivenP, a vector sheaf and the representatien: £L —> Aut, one obtains the
so-calledassociated sheaf of(P),3? which is a sheaf of vector spaces locally of
type& inthe sense that, relative to a coordinate gddfier X', there are coordinate
maps

@, : o(P)ly, — Elu, (24)

We assume that the associated vector sheaeétheG-sheave® presented
above are of the type mentioned before in the context of ADG, naroelglly
free A-modules of finite ranf.e., locally isomorphic tA") (Mallios, 1998a,b).
We thus come to the main definition of a connectidron a principal sheaP
generalizing the Maurer—Cartan differentsain (20) in a way analogous to how
D on a vector sheaf in (3) generalized the flat differentialin (1). Thus,

D:P — QY& (25)
is a morphism of sheaves of sets satisfying
D(s-g)=a(gh) Ds+9g; sePU) and ge LU)  (26)

Locally (i.e., U-wise in X), one can show, in complete analogy to the local
decompositiond + A of the A-connectionD on £ in (8), thatD too can be

3OWwhere is the sheaf of Lie algebras of the Lie group shgaf’ is supposed to represent theal
structural typeof P (Vassiliou, 1999).

31P may be thought of as “coordinatizing” the principal sheaf, thus we use the same syRilfor“
the principal sheaf and its coordinatizing sheaf of setis the usual projection map froff to the
base spac&. For more details, refer to (Vassiliou, 1994, 1999, 2000).

320therwise calledhe P-, or eventhe £-associated vector sheaf

33This morphism can be equivalently writteras P — Q' @4 L(= Q)1(£)), to manifestthe usual
statement that a connection on a principal sheaf is a Lie algebra-valued 1-form. Time and again we
will encounter this definition below.
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written as

D=0+ A (27)
and that, for a given coordinate gautye= {U,}.c; for X with natural local
coordinate sections @? s, := ¢, 1 o 1|y, € P(Uy),

(A = D(s) € QHE)WU.) (28)

in complete analogy to the local gauge potential 1-fopnsf connectiong on
vector sheaves presented in (5)-(8). _

Now, the essential point in this presentation of connectibran principal
sheave$ in relation to our presentation éf-connectiong on vector sheave$
earlieris thatwhen the latter are tReassociated sheaves relative to corresponding
representations : £ — Aut¢, the following “commutative diagram” may be
used to picture formally thes*-induced projectiod” of D onPtoD on&

P—2 SA

T .

Q) — )

wheres"may be regarded a morphism betwé@eandA regarded simply as sheaves
of structureless sets.

To make an initial contact with Mallios and Raptis (2001), we can now partic-
ularize the general ADG-based presentation of principal shéaaimve to (real)
LorentzianG-sheavesAs briefly noted earlier, the structure gro@dwelling
in the stalks of the latter is taken to e := SO(1, 3! —the Lie group of or-
thochronous LorentA-isometries, so thaP in this case is denoted b§™. The
L*-associated shedf' = (&, p) is a (real) vector sheaf of rank 4, equipped with
anA-metric p of absolute trace equal to 2. Thus, there is a local homomorphism
(representationy of the Lie algebraso(1, 3)' ~ sl(2, C) of the structure group

34Furthermore, one can show that for a local change of ggugen (9), theds obey a transformation
law of potentials completely analogous to the one obeyed by4thén (10). Without going into
any details, it readsl’ = o(g)~L.Ao(g) + o (9) 109, (0(g71) = o(g)~2) (Vassiliou, 1994, 1999,
2000).

35That is to say, by forgetting both the group structure ofghsheafP and the algebra structure of
the structure shed. The inverse procedure of building the principal si@aind the connectio®
on it from its associated vector sheaénd the connectio® on it may be loosely calleds*-induced
lifting ‘52" of (€, D) to (P, D). Theo ~L-lifting is a forgetful correspondence since, in going from a
vector sheafto its structure group sheaf, the linear structure of the former is lost—something which is
in fact reflected on that, whil® is C-linear, D is not. However, for more details about commutative
diagrams like (29) between principal sheavE@(Dl) and (P, Dz), their corresponding associated
sheaves&y, D1) and €1, D1), as well as the respective projectianefthe former to the latter, the
reader is referred to Vassiliou (2000).
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L™ in £* into the “Lie algebra” sheadiuta(£T) of the group sheafuta (1) of
invertible A-endomorphisms of preserving the Lorentziaf-metric p—that is,
the A-metric p symmetries (isometries) &f'.

Collecting information from our presentation of connectionsesheaves
and their associated vector sheaves, we are in a position now to recall from Mallios
and Raptis (2001) that, in the particular case offhieassociated vector sheéf,

the gauge potential pa#t of anA-connectiorD on£Tisanso(1, 3)' ~ sl(2, C)-valued
1-formonL™,

the so-calledpin-Lorentzian connection 1-form.

After we discuss the affine spageof Y-M and Lorentzian gravitational
G-connections from an ADG-theoretic perspective in subsection 2.4, as well as
present the connection-based vacuum Einstein equations ADG theoretically in the
next section, we are going to return to the kinematical spin-Lorentzian connections
on principal finisheaves of qausets and their associated vector sheaves studied in
Mallios and Raptis (2001) in section 4, then we will formulate their dynamical
vacuum Einstein equations in section 5, and finally, in the same section, we will
discuss a possible covariant (i.e., action-based, path integral-type of) quantum
dynamics for them.

2.3. Curvatures of A-Connections

In ADG, the curvatureR of anA-connectiorD, like D itself, is defined as an
A-module sheaf morphismviore analytically, lett = (A, 9, ©2) be a differential
triad as before. Define “inductively” the following hierarchy of sheave&Z pf
-gradedA-modulesQ' (i € Z, = N U {0}) of exterior (i.e., Cartan differential)
forms overX

Q0 =A, Q=01 =AM, P=A QA0 0 =@ Y = A0t
(30)

and, in the same way tha{= d°) is aC-linear morphism betweeA = Q° and
Q = Q! as depicted in (1), define a second differential operatard?) again as
the following C-linear A-module sheaf morphism

da: 0! - 02 (31)
obeying relative t@®
dod =0andd(x-S) =« -ds—snAda, (xe€AU),se QU),Uopenin X)
(32)

and calledhe first exterior derivatioff.

361n (30), “AA” is the completely antisymmetri&-respecting tensor producgA.”
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Then, in complete analogy to the “extension” of the flat conneciiaa d
above, given &-module& endowed with arA-connectiorD, one can define the
first prolongation ofD to be the followingC-linear vector sheaf morphism

D QL&) — Q3(E) (33)
satisfying sectionwise relative ©
Disdt) :=s@dt —tADs, (sec&U),teQU)UopeninX) (34)

We are now in a position to define the curvat®ef an A-connectiorD by
the following commutative diagram

D . Q&) =E®a Q!

£ )
R=7D! o\D\ ﬁ (35)

Q%(E) = £ @a Q2

from which we read that
R=R(D):=D'oD (36)

Therefore, any time we have ti@&linear morphisn® and its prolongatioD?! at
our disposal, we can define the curvatB{@®) of the connectio®.3” By defining a
curvature spaces the finite sequencé (9, Q*d, Q2) of A-modules an€-linear
morphisms between them, we can distill the last statement to the following:

we can always define the curvatureof a givenA-connectiorD, provided we have a
curvature space.

As a matter of fact, it is rather straightforward to see thatffavector sheaf,
R(D) is anA-morphism ofA-modules, in the following sense

R € Homa (€, Q2(&)) = Homa (€, Q2(£))(X)
Q2(EndE)(X) = Z°%(U, Q%(Ende)) (37)

37In connection with (36), one can justify our earlier remark that the standard differential operator
9, regarded as aA-connection as in (1) (i.e., as the sheaf morphismA — Q! = A @ Q! =
Q(A)), isflat, sinceR(3) = d o 8 = d* 0 d® = d2 = 0 (which is secured by the nilpotency of the
usual Cartan—HgHler (exterior) differential operatdr(Mallios and Raptis, 2002)). In the latter paper,
and in a sheaf-cohomological fashion, it was shown that it is ex@#ydeviation from nilpotency
(i.e., from flatness), which in turdefinesa nonvanishing curvatur(D) = D? # 0, that prevents
asequence - D31 QN D QI pitL. .. of differential A-module sheave®' andC-linear sheaf
morphismsD' between them from being@mplex (D', i > 2, stan for high-order prolongations
of the DY = D andD? connections above (Mallios, 1998).)
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whereld = {U,}qc| is an open cover ok andZ°(/, Q(EndE)) theA(U)-module
of 0-cocylesof Q%(£nd&) relative to the{-coordinatization ofX .3

2.3.1. The Local Form of R

Motivated by (37) and the last remarks, we are in a position to give the local
form for the curvaturdR of a givenA-connectiorD. Thus, let€ be a vector sheaf of
rankn, D anA-connection on it, antf¥ = {U,}.ci a local coordinatization frame
of it. By virtue of (37) we have

R(D) = R = (R") = (R}) € 2°W, @¥(€nae)) < [T3Ende)(U.)

o

= [ Ma(Q2(U.)) (38)

so that we are led to remark that

the curvatureR of an A-connectionD on a vector sheaf of rankn is a 0-cocycle of
local nxn matrices having for entries local sectionst@?—i.e., local 2-forms orX.

2.3.2. Local Gauge Transformations of R

We investigate here the behavior of the curvatd(®) of an A-connection
D under local gauge transformations—the so-cattadsformation law of field
strengthsn the usual gauge-theoretic parlance and in ADG (Mallios, 1998).
Thus, lelg = gi; € GL(n, A)(U N V) be the change-of-gauge matrix we con-
sidered in (9) in connection with the transformation law of gauge potentials. Again,
without going into the details of the derivation, we bring forth from (Mallios, 1998)
the following local transformation law of gauge field strengths

for a local frame changeV RN (U, Vopen gauges in X),

the curvature transforms aR— R = g !Rg (39)

which we are familiar with from the usual differential geometric (i.e., smooth
fiber bundle-theoretic) treatment of gauge theories. For completeness, we remind
ourselves here that, in 3’ = (RY"Y) € Ma(Q2%(U N V))—annxn matrix

of sections of local 2-forms. The transformation®iinder local gauge changes

is calledhomogeneouar covariantin the usual gauge-theoretic parlance. We will
return to this term in subsection 2.3.5 and subsequently in section 5 where we will
comment on the geometrical (i.e., tensorial) character of curvature.

380ne may wish to recall that, for a vector shefflike the one involved in (37)£nd€ =
HOMA(E, £) = € @p E* = E* @4 E.
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2.3.3. Cartan’s Structural Equation—Bianchi Identities

We express in ADG-theoretic terms certain well-known, butimportant, (local)
identities about curvature. We borrow material mainly from (Mallios, 1998).

So, let€ be a vector sheaf and assume that {U,},c| provides a coor-
dinatization for it, as above. The usual Cartan’s structural equation reads in our
case

R = (R[) = aA® + A A A® € M(2%(U,) (40)
and similarly in the case of a she@bf A-modules and) open inX
R=dA+AAA  (4j) € My(2Y(V)) (41)

(41) can be also written in tHdaurer—Cartan form
1
R=dA+S[A Al (42)

by setting 4, A] = A A A — A A A. For a one-dimensional vector sheafi.e.,
a line sheaf’) equipped with a\-connectiorD, the commutator in (41) vanishes
and we obtain the curvature as the following 0-cocycle

R = (dAa) € Z°W, a0") = (@Q")(X) € Q*(X) < [ [ 2%(U.)  (43)
with (A4,) € COU, Q1) = [1, ©*(U,) the corresponding (locaB-connection 0-
cochain ofD.

To express the familiar Bianchi identities obeyed by the curva®{fe), and
similarly to the extension df = d° to the nilpotent Cartan-#tiler differentiall =
d! in subsection 2.3, we need the extensionlbfo asecond exterior derivation
d = d? which again is &C-linear sheaf morphism of the respective extedor
module§®

d: 02 - 0 (44)
acting (local) sectionwise as follows:
d(sat):=dsAt—sAadt,VsteQlU); U € Xopen (45)
and being nilpotent
d’ocd*=dod=d*=0 (46)

As aresultofthe extension atod, the aforementionetlirvature spacé, 9, Q*,
d, ©2), when enriched with th&-module sheaf2® as well as with the nilpotent
C-linear morphismi in (44), becomes a so-call&lanchi space

391n the sequel, following the cohomological custom in (Mallios and Raptis, 2002), we idéntify
andd (and all higher-order exterior derivations) with the generic Cartan differettédecifying its
order only when necessary and by writing genericdlly > 0).
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In a Bianchi space, the ususgcond Bianchi identitiiolds
dR=dR=[R,A]=RAA-AAR 47

whered is understood to effect coordinate-wisk: M,(22) — M, ($23).
In the case of a line shedf, one can easily show by using (30) and the
nilpotency ofd that

dR=0 (48)

which is usually referred to as timogeneous field equatiorhe latter, in turn,
translates to the following cohomological statement,

the curvaturer of anA-connectiorD on a line sheaf over X provides a closed 2-form
on X.

which came very handy in the sheaf-cohomological classification of the curved-
associated line sheaves of qausets and their quanta—the so-called “causons”—
performed in (Mallios and Raptis, 2002).

Finally, one can also show that the second prolongdiigp,. of the induced
A-connectionDgngs ONENAE = £ R E* satisfies the following “covariant ver-
sion” of the second Bianchi identity (47) above

DZnae(R) =0 (49)

whereD?2, ,.: Q4(EndE) — Q%(EndE). Thus, similarly to (47), one also shows
that

DengsR=dR+[A, R] (50)

which proves thequivalencef the second (exterior differential) Bianchi identity
on & and its induced (covariant differential) version &nd€.

2.3.4. The Ricci Tensor, Scalar, and the Einstein—Lorentz (Curvature) Space

Given a (real) Lorentzian vector sheé&f (o) of rankn equipped with a nonflat
A-connectioriD,*° one can define, in view of (37) tiefollowing Ricci curvature
operatorR relative to a local gauge of £

R(., 9)t € (EndE)(U) = My (AU)) (51)

for local sections andt of £ in £(U) = A"(U) = A(U)". R is an&énd&-valued
operatof?.

40The reader should note that below, and only in the vacuum Einstein case, we will symbolize the
connections involved b instead of the calligraphi® we have used so far to denote the general
A-connections in ADG.

41Due to this;R has been called urvature endomorphisin (Mallios, 2001).
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SinceR is matrix-valued, as (51) depicts, one can take its trace, thus define
the followingRicci scalar curvature operatdR

R(s, 1) := trR(., S)t) (52)

which, plainly, isA(U)-valued.

We have built a suitable conceptual background to arrive now at a central
notion in this paper. A (real) Lorentzian vector sh&df= (£, p) over anR-
algebraized spaceX( A) such that:

1. itis supported by a differential trigfl = (A, 8, Q1) relative to which (12)
holds, i.e.£ = Q*;

2. there is arR-linear Lorentzian connectioP on it satisfying (17) (i.e., a
metric connection) and, furthermore; and

3. itis a curvature spacé( 9, Qt, d, Q2) supporting aull R, that is to say,
aRicci scalar operator satisfying the vacuum Einstein equations

RE)=0 (53)

is called arEinstein—Lorentz (E-L) spag@hile the corresponding base spacean
Einstein spacéMallios, 2001)#? Of course, it has been implicity assumed that, for
an appropriate choice of structure sh@afEq. (53)can be actually derived from
the variation of the corresponding Lagrangian dengi§ias, Einstein—Hilbert
action functional'sy). We will return to this assumption in the next section.

In connection with the definition of an Einstein spaXeit is worth noting
that

the only structural requirement thADG places on the Einstein base spacés that
it is, merely, a topological space—in fact, an arbitrary topological space, without any
assumptions whatsoever about its differential, let alone its metric, structure.

This prompts us to emphasize, once again (Mallios, 1998, 2001; Mallios and
Rosinger, 1999, 2001; Mallios and Raptis, 2001, 2002; Mallios, 2002), the essential
“working philosophy” of ADG:

to actually do differential geometry one need not assume any “background differen-
tiable space’X, for differentiability derives from the algebraic structure of the objects
(structure algebras) that live on that “space.” The only role of the latter is a secondary,
auxiliary and, arguably, a “physically atrophic” one in comparison to the active role
played by those objects (in particular, the algefréJ) of local sections of\) them-
selves:X merely provides an inert, ether-like scaffolding for the localization and the
dynamical interactions (“algebraically and sheaf—theoretically modelled interrelations”)
of those physically significant objects—a passive substrate of no physical significance

42|n the next section, where we will cast Lorentzian gravity as a Y-M-type of gauge thdamDG,
we will also define &¥ang—Millsspace analogous to the Einstein space above.



1502 Mallios and Raptis

whatsoever, since it does not actively participate into the algebraico-dynamical rela-
tions between the objects themseffesAll in all, the basic objects that ADG works
with is the sections of the sheaves in focus—that is, the entities that live in the stalks
of the relevant sheaves, and not with the underlying base sfase that any notion

of “differentiability” according to ADG derives its sense from the algebraic relations
between (i.e., the algebraic structure of) those (local) sections, with the apparently “in-
tervening between” or “permeating through these objects” background Xpaleging
absolutely no role in it

2.3.5. A Fundamental Difference BetweRrand RD) and Its
Physical Interpretation

At this point it is worth stressing a characteristic difference betweeA-an
connectiorD and its curvaturé&k(D)—a difference that is emphasized by ADG, it
has a significant bearing on the physical interpretation of our theory, and it has been
already highlighted in both (Mallios and Raptis, 2001) and (Mallios and Raptis,
2002); namely that,

while R is anA-morphism,D is only aK-morphism K = R, C).

This means that, since the structure sh&aforresponds to “geometry” in our
algebraic scheme, in the sense tA@t))—the algebra of local sections &f—
represents the algebra of local operations of measurement (of the quantum system
“space-time’)relative to the local laboratory{frame, or gauge, or even “obser-
vation device”)U (Mallios and Raptis, 2001, in press; Raptis, 2000b), it effec-
tively encode®ur geometrical information about the physical system in fdéus.

43|ts arbitrary character—agaiiX, is assumed to be simply ambitrary topological space-reflects
precisely its physical insignificance. This nonphysicality, the “algebraic inactivity” and “dynam-
ically nonparticipatory character” so to speak, of the background space will become transparent
subsequently when we formulate the dynamical equations for vacuum gravity entirely in terms of
sheaf morphisms between the objects—i.e., virtually the sections—that livgtbe Xain sheaf
morphism being the connectidR—arguably the central operator with which one actually does
differential geometry). At this point we would like to further note, according to (Mallios, 1998),
that asheaf morphism is actually reduced to a family of (local) morphisms bet(tleertomplete
presheaves ofpcal sections M o€, F) 3 ¢ < (¢u) € Mor(I'(E), I'(F)—a category equivalence
through ¢he section functgf. In the last section we will return to the inert, passive, ether-like
character of the base space in the particular caseXthiat(a region of) aC*°-smooth space-time
manifold. There we will argue how ADG ‘relativizes’ thdifferential properties’ of space(time).

44 As mentioned beforedx is the abelian algebra sheaf géneralized arithmeticsn ADG general-
izing the usual commutative coordinate shB&fS of the smooth manifold—the sheaf of abelian
rings®C> (M) of infinitely differentiable, real-valued functions on the differential manifisldWe
tacitly assume in our theory thajeometry” is synonymous to “measurementience, in the quan-
tum context, it is intimately related to “observation” (being, in fact, the result of it). Furthermore,
since the results of observation arguably lie on the classical side of the quantum divide (the so-called
Heisenberg SchnjitA must be a sheaf afbelianalgebras. This is supposed to be a concise ADG-
theoretic encodement of Bohr’s correspondence principle, namelyhthatimbers that we obtain
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Consequently,

R, which, being arA-morphism, respects our local measurements—the “geometry-
encoding (measuring) apparatut of ADG so to speak—is a geometrical object (i.e.,

a tensor) in our theory and lies on the classical side of the quantum divide. On the
other hand,D, which respects only the constant shEgE= R, C) but not our (local)
measurements iA, is not a geometrical objett and it lies on the quantum (i.e., the
purely algebraica la Leibniz (Mallios, 2002), side of Heisenberg's &it.

2.4. The Affine Space\ of A-Connections

We fix theK -algebraized spac&( A) and the differential triad = (A, 3, )
on it with which we are working, and we I€tbe anA-module onX. We denote

by
Aa(&) (54)

the set ofA-connections o. By definition (3),A4(€) is a subset of Hop(E, 2
(£)) (2 = Q) whose zero element may be regarded as the Aeronnection in
An(E). However, by (4), one infers thatis also zero in this case, thus we will
exclude altogether the zefo-connection fromia(€). Since any connection may
be taken to serve as an “origin” for the spacéefonnections, we conclude that

Aa(€) is an affine space modelled after th€X)-module Hong (€, ©2(£)). For a vector
sheaf€, Homk (£, Q(€)) becomeN2(EndE)(X).

Now, in connection with the statement above e anA-connection ima(£) =
Homk (€, (£)). Then, it can be shown (Mallios, 1998a,b) that any other

upon measuring the properties of a quantum mechanical system (the so-called g-numbers) must be
commutative (the so-called c-numbeiig).other wordsthe acts of measurement yield c-numbers
from g-numbersso that “geometry’—the structural analysis of (the algebras of our local measure-
ments of) “space”—deals, by definition, with commutative numbers and the (sheaves of) abelian
algebras into which the latter are effectively encoded. See also closing remarks in Mallios (1998b)
for a similar discussion of “geometwy la ADG” in the sense above, as well as our remarks about
Gel'fand dualityin subsection 5.5.1

45 Another way to say this is th#ite notion of connection is algebraicd., analytic), not geometrical
In short, D is not a tensor That R is a tensor whileD is not is reflected in their (local) gauge
transformation laws that we saw earligttransforms affinely orinhomogeneously (nontensorially),
while R covariantly or homogeneously (tensorially) under a (local) change of gauges.

46 Although it must be also stressed tHaf like the usual notion of derivativé that it generalizes,
has ageometrical interpretationAs the derivative of a function (of a single variable) is usually
interpreted in a Newtonian fashion as the slope (gradient) of the tangent to the curve (graph) of the
function, soD can be interpreted geometrically as a parallel transporter of objects f&zasors)
along geometrical curves (paths) in space(time). However, it is rather inappropriate to thirsat
geometrical object proper and at the same maintain a geometrical interpretation foddtefait not
sound redundant to ask for the geometrical interpretation of an “inherently geometrical” object, like
the triangle or the circle, for instan@eln other wordsif the notion of connection was “inherently
geometrical,” it would certainly be superfluous to also have a geometrical interpretation for it.
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connectiorD’ in A (€) is of the form
D'=D+u (55)

for a uniquely defineds € Homa (€, QY(€)). For £ a vector sheafu belongs
to QY(EndE)(X). Thus, for a giverD € Ax(E) we can formally write (55) as
AA(E) = D + Homa (€, QY(E)), within a bijection. Interestingly enough, (55) tells
us that the difference of two connections, which ldréinear sheaf morphisms, is
an A-morphism like the curvature; hence, in view of the comparison betWeen
and R(D) above, we can say th&' — D is a geometrical object since it respects
our measurements Mby transforming homogeneously (tensorially) under (local)
gauge transformatiorfs.

In the particular case of a line sheaf

Aa(L) can be identified witlf2'(X)—the A(X)-module of1-forms on X.

Thus, given any connectioP in Ax(L£), any other connectio® on £ can be
written as?’ = D + » for some uniquey in Q1(X). This result was used in
Mallios and Raptis (in press) for the sheaf-cohomological classification of the
line sheaves associated with the curved principal finsheaves of gausets and the
nontrivial connections on them in Mallios and Raptis (2001).

We will return to Ax(€) in the next section where we will factor it by the
structure (gauge) groug = Aut(£) of £ to obtain the orbifold or moduli space
AA(€)/G of gauge-equivalent connections énof a Y-M or gravitational type
depending org;.

3. VACUUMEINSTEIN GRAVITY ASAY-M-TYPE OF GAUGE THEORY
A LA ADG

In this section we present the usual vacuum Einstein gravity in the language of
ADG, i.e., as a Y-M-type of gauge theory describing the dynamics of a Lorentzian
connection on a suitable principal Lorentzian sheaf and its associated vector sheaf,
in short, on an E-L space as defined above. We present only the material that
we feel is relevant to our subsequent presentation of finitary vacuum Lorentzian
gravity encouraging the reader to refer to the literature (Mallios, 1998a,b, 20014,
manuscript in preparation) for more analytical treatment of Y-M theories and
gravity a la ADG. But let us first motivate in a rather general way this conception
of gravity as a gauge theory

4TThe reader could verify that transforms covariantly under (local) changes of gauge.
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3.1. Physical Motivation

Itis well known that the original formulation of general relativity was in terms
of a pseudo-Riemannian metgdg, on aC*°-smooth space-time manifold. For
Einstein, the 10 components of the metric represented the gravitational potentials—
the pure gravitational dynamical degrees of freedom so to speak. However, very
early onitwasrealized that there was an equivalent formulation of general relativity
involving the dynamics of the so-callsgin-connectiom. This approach came to
be known aginstein—Cartan theor§Gockeler and Schucker, 1990) and arguably it
was the first indication, long before the advent of the Y-M gauge theories of matter,
that gravity concealed some sort of gauge invariance which was simply masked by
the metricformulation® In fact, Feynman, in an attempt to view gravity purely
field-theoretically and, in extenso, quantum gravity as a quantum field theory (i.e.,
in an attempt to quantize gravity using a language and techniques more familiar
to a particle physicist than a general relati¥igthe essentially “downplayed,”
or at least undermined, the differential geometric picture of general relativity and
instead he concentrated on its gauge-theoretic attributes. Brian Hatfield nicely
reconstructed Feynman’s attitude towards (quantum) gravity in (Feynman,%999),
as follows:

...Thus itis no surprise that Feynman would recreate general relativity from a nonge-
ometrical viewpoint. The practical side of this approach is that one does not have to
learn some “fancy-schmanzy” (as he liked to call it) differential geometry in order to
study gravitational physics. (Instead, one would just have to learn some quantum field
theory.) However, when the ultimate goal is to quantize gravity, Feynman felt that the
geometrical interpretation just stood in the way. From the field theoretic viewpoint, one
could avoid actually defining—up front—the physical meaning of quantum geometry,
fluctuating topology, space-time foam, etc., and instead look for the geometrical mean-
ing after quantization. . Feynman certainly felt that the geometrical interpretation is
marvellous, but the fact that a massless spin-2 field can be interpreted as a metric
was simply a coincidence that might be understood as representing some kind of gauge

invariance”®!

“8Recently, after reading (Kostro, 2000), the present authors have become aware of a very early
attempt by Eddington at formulating general relativity (also entertaining the possibility of unifying
gravity with electromagnetism) based solely on the affine connection and not on the metric, which
is treated as a secondary structure, “derivative” in some sense from the connection. Indicatively,
Kostro writes, . . [Eddington’s]approach relied on affine geometry. In this geometry, connection,
and not metric, is considered to be the basic mathematical entity. The mggfic)geeded for the
description of gravitational interactions, appears here as something secondary, which is derived
from connection. .” (bottom of p. 99 and references therein).

49Such an approach was championed a decade later by Weinberg in a celebrated book (Weinberg,
1972).

50see Hatfield’s Preamble titlg@uantum Gravity

510ur emphasis of Feynman’s words as quoted by Hatfield.
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Feynman'’s “negative” attitude towards the standard differential geometry and the
smooth space-time continuum that supportg igspecially if we consider the
unrenormalizable infinities that plague quantum gravity when treated as another
quantum field theory, is quite understandable if we recall from the beginning of
the present paper his earlier position—repeated once agairthth#tieory that
space is continuous is wrong, because we getfinities. . . the simple ideas of
geometry, extended down to infinitely small, are wrdiag)!

However, it must be noted that Feynman’s “unconventional” attempt in the
early 1960s to tackle the problem of quantum gravity gauge quantum field-
theoretically was preceded by Bergmann’s ingenious recasting of the Einstein-
Cartan theory in terms of two-component spinors, thus effectively showing that
the main dynamical field involved in that theory—the spin conneciiesnis an
sl(2, C)-valued 1-form (Bergmann, 195%) All in all, it is remarkable indeed
that such a connection-based approach to general relativity, classical or quan-
tum, has been revived in the last 15 years or so in the contexargferturbative
canonical quantum gravity\e refer of course to Ashtekar’s modification of the
Palatinivierbeinor comoving four-frame-based formalism by using new canonical
variables to describe the phase space of general relativity and in which variables
the gravitational constraints are significantly simplified (Ashtekar, 1986). Inter-
estingly enough, and in relation to Bergmann’s work mentioned briefly above, in
Ashtekar’s scheme the principal dynamical variable islé®, C)-valuedself-dual
spin-Lorentzian connectiohform A*5 (Ashtekar, 1986).

But after this lengthy Preamble, let us get on with our main aim in this section
to present the classical vacuum Lorentzian gravity as a Y-M-type of gauge theory
in the manner of ADG.

3.2. Y-M Theory a la ADG—Y-M Curvature Space

Let (£, p) be a (real) Lorentzian vector sheaf of finite ramlkassociated
with a differential triad¥ = (A, 3, ), which in turn is associated with tHe-
algebraized space&( A),*¢ andD a nontrivial Lorentziam\-connection onit (i.e.,
R(D) # 0). In ADG, the pair £, D) is generically referred to as\aM field the

52The reader must have realized by now that by the epithets “standard,” or “usual,” or more importantly,
“classical,” to “differential geometry” we mean the differential geometrg & smooth manifolds—
the so-called “calculus on differential manifolds.”

53|n the closing section we will return to comment thoroughly, in the light of ADG, on this remark by
Feynman and the similar one of Isham also quoted in the beginning of the paper.

54More precisely, in Bergmann's theoretical scenario for classical Lorentzian grgyitis replaced
by a field of four 2x 2 Pauli spin-matrices which is locally invariant when conjugated by a member
of SL(2, C)—the double cover of the Lorentz group.

55 ater in the present section we will discuss briefly self-dual connections from ADG’s point of view.

56with X a paracompact Hausdorff topological space Anaifine unital commutative algebra sheaf
(overR) onit, as usual.
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triplet (£, p, D) as alLorentz—Yang—Mills (L-Y-M) fieJdand it has been shown
(Mallios, 1998, 2001) that

every Lorentzian vector sheaf yields a (nontrivial) L-Y-M fielf, p, D) on X the
(nonvanishing) field strength of which j§(D).

As in the definition of the E-L space earlier, in case the curvatuied the con-
nectionD of a L-Y-M field satisfies the free Y-M equations, which we write as
follows:>8

82,qe(F) =0 or A2 4(F)=0 (56)

and which, in turn, we assume that can be obtained from the variation of a cor-
responding Y-M action functiona})91t,° the curvature space\( 8, 2, d, 2?)
associated with the L-Y-M field is called drY-M curvature spacé, while the
supportingX, anL-Y-M spacé? In connection with the said derivation of the Y-M
equations fron)9t, we note th&e

the solutions of the Y-M equations that correspond to a given Y-M fi€ld}) are
precisely the critical or stationary points (or extremaf}$9)t that can be associated
with £.

To make sense of (56) ADG theoretically, we need to define the coderivative and
the Laplacian of a given L-Y-M fieldq, o, D). We do this below.

57In the sequel, and similarly to how we used different symbols for the (vacuum) gravitational connec-
tion D and its Y-M counterparD, we will useF for the curvature of the latter instead Bf(R and
R) that we used for the former. In the Y-M context the curvature of a connection is usually referred
to as the (gauge) field strength.

581n (56), “5” is the coderivative(Gockeler and Schucker, 1990) andheLaplacian operatorwhich
we will define in an ADG-theoretic manner shortly. These are two equivalent expressions of the
free Y-M equations. Their equivalence, which is a consequence of the covariant differential Bianchi
identity (50), has been shown in Mallios (1998a).

59We will discuss this derivation in more detail shortly.

60 A particular kind of Bianchi space defined earlier.

611n order for the reader not to be misled by our terminology, it must be noted here that, in contrast
to the usual term “(free) Yang—Mills field” by which one understands the field strength of a gauge
potential which is a solution to the (free) Y-M equations (56), in ADG, admittedly with a certain abuse
of language, a Y-M field is just the pai€ (D), without necessarily implying thak (D) satisfies
(56). On the other hand, the Y-M space X supporting the Y-M curvature spadg Q1, d, Q?)
associated with a Y-M fieldd, D), is supposed to refer directly to solutio#XD) of (56)—as it
were, it represents the “solution space” of (56). This is in complete analogy to the Einstein-Lorentz
space and Einstein spagalefined in connection with the vacuum Einstein equations for Lorentzian
gravity in (53). We will return to comment further on this conception of a curvature space as a
geometrical “solution space” in section 5 when we express (53) in finitary terms.

62|n fact, the statement that follows is a theorem in ADG (Mallios, 1998b, 2001a, manuscript in
preparation). We will return to it in subsection 3.3.
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3.2.1. The Adjoins and the Laplaciam of an A-Connection in ADG

Let T = (A, 9, Q') be the differential triad we are working with anda
Lorentzian A-metric on it, as usual. Let al§obe a Lorentzian vector sheaf of
finite rankn andD a Lorentzian Y-M connection on it. By emulating the classical
situation sheaf-theoretically, as it is customary in ADG, one can defiralibint
derivations of D relative top as the following A-morphism of the vector sheaves
involved

st=45: QY8 — (= Q%¢)) (57)
satisfying
p(D(s), ) = p(s, 8(1)) (58)

with the obvious identification®s € £(U), t € Q1(€)(U), andU a common open
gauge off andQ(£). § is uniquely defined through th&-metric isomorphism
& >~ &*we saw in (12).

To define the Laplaciam\ associated withD, apart from the connection
D = PP and the coderivativé, we also need? (the first prolongation oD, as
in (33)) ands; 2%(£) — Q! (the second contraction relative %?) as follows:

A=A :=820D 4+ D% 8= 6D+ D5 : QYE) — Q&) (59)

Higher order Laplaciana;, generically referred to a&, can be similarly defined
asK-linear vector sheaf morphisms

Al = Q) - QY€),i eN (60)

and they read via the corresponding higher order conneciibaad coderivatives
di

A =5+ oD + D108, ieN (61)
with the higher order analogues of (58) being
p(DP(9), 1) = p(s, 8P(1)),  peZy (62)

wherep is theA-metric on the vector she&tP(£) and the “exterior” analogue of
(12) reading

Q°(E) — (@PE)" (63)

Having definedA andé, the reader can now return to (56) understanding
82, 4c andAZ_ .o as the mapsZ, . andQ?(EndE) — Q4(EndE), andAZ, . =

63Which can be defined in complete analogy to (58).
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8204s © D2 ge + Do 82 1o 1 QX(ENAE) — Q(EndE) respectively* By abus-
ing notation, we may rewrite the free Y-M Eq. (56) as

5(F)=0 or A(F)=0 (64)

hopefully without sacrificing understanding.

Our ADG-theoretic exposition of the Y-M equations so far, together with
a quick formal comparison that one may wish to make between the aforedefined
(vacuum) E-L and the (free) L-Y-M curvature spaces, reveals our central contention
in this section, namely that

in ADG, vacuum Einstein-Lorentzian gravity is a Yang—Mills type of gauge theory
involving the dynamics of a Lorentzian connectibron an Einstein spack¥. In com-
plete analogy to the L-Y-M case above, the corresponding triflei (D) (whose Ricci
scalar curvatur@ is) satisfying (53), is called a (vacuum) Einstein-Lorentz field. For
rankn = 4, structure group Auf{’) = L' and principal sheaf ", the associated vac-
uum Einstein-Lorentz field is written a8 {, D)(E" = (£, p)). Locally in the Einstein
spaceX, D = 3 + A, with A ansl(2, C) ~ sq(1, 3)'-valved 1-form representing the
vacuum gravitational gauge potential.

3.3. The Einstein—Hilbert Action Functional ¢

Now that we have established with the help of ADG the close structural
similarity between vacuum Einstein-Lorentzian gravity and free Y-M theory, we
will elaborate for a while on our remark earlier that both (53) and (56) or (64) derive
from the extremization of an action functional—the Eé€l$ in the first case, and
the Y-M 91 in the second. Since only vacuum Einstein gravity interests us here,
we will discuss only the variation of$, leaving the variation o)1 for the
reader to read from (Mallios, 1998a,b, manuscript in preparation).

As it has been transparent in the foregoing presentation, from the ADG-
theoretic point of view, the main dynamical variable in vacuum Einstein Lorentzian
gravity is the spin-Lorentzian A-connecti@ or equivalently, its gauge potential
part.4 on the vector shea’ = (€, p). Thus, one naturally anticipates that

the E-H action®$) is a functional on the affine spade(£") of Lorentzian metric
(i.e., p-compatible)A-connections o T.

Indeed, we defin€$) as the following map
€5 AAET) = A(X) (65)
reading “pointwise”
D +— €H(D) := R(D) =: trR(D) (66)

64 Always remembering that the field strengftof the L-Y-M connectiorD is anA-morphism between
the A-modulesE andQ?(€) (i.e., a member of{oma (£, Q2(£))(X)), as (37) depicts.
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where. plainly,R is a global section of the structure sheaf of coefficignig.e.,
R € A(X)).

Our main contention (in fact, a theorem in ADG (Mallios, 1998a,b, 2001a))
in 2.3, as well as in 3.2 in connection with Y-M theory, was that

the solutions of the vacuum Einstein field equations (53) that correspond to a given
E-L field (€1, D) are obtained from extremizing $)—that is, they are the critical or
stationary points of the functionf ) associated witi€? in (65) and (66) above.

In what follows we will recall briefly how ADG deals with this statement.

The critical points of£$) can be obtained by first restricting it on a cupg)
in connection space (i.e,: t € R — y(t) € Aa(E")) and then by infinitesimally
varying it around its “initial” value€&$H[Dy] = EH[y (0)]. Alternatively, and fol-
lowing the rationale in Mallios (2001), to find the stationary point€6f one has
to find the “tangent vector” at timie= 0 to a pathy (t) in the affine spacAA(£"))
of A-connections of ', on which path&$ is constrained to take valuesA(X)
as (65) dictates. All in all, one must evaluate

r—/-;-\ z—/‘H
€H(y (1))(0) = €H(r)(0) (67)
wherex is Newton’s notation fof.
For a given Lorentzian metric connectidh, one can take the path in
connection space to be
y®) =Dy =D +tD e A aleh), teR (68)

where® e Q*(ende)(X) as mentioned earlier in (55, may be regarded as the
A-connection orz’ compatible with the Lorentzian metrig = p + tp’, with p’
an arbitrary symmetrié-metric one'.

So, given the usual E-H action (without a cosmological constant)

¢H(D) = f R(D)wr (69)

with @ the volume element associated witli® (67) reads

d —_—— d
& (€9(DNo = THDI(O) = f SRl (70)

/—/.h\
By setting€H(Dy) (0) in (70) equal to zero, one arrives at the vacuum Einstein
equations (53) for Lorentzian gravity.

65We will return to definew shortly.
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3.3.1. A Brief Note on the Topology Af (¢1)

In the Introduction we alluded to the general fact that the space of connections
in non-linear (i.e., it is not a vector space) with a “complicated” topology. Below
we would comment briefly on the issue of the topology of the spgge™) of
spin-Lorentzian connections ah. This issue is of relevance here since one would
like to make sense of th&-diﬁerentiation of&$ in (67). Thus, in connection with
(67), the crucial question appears to be

with respect to what topology (oAa(¢™)) does one take the limit so as to define the
(“variational”) derivative of&$) with respect to t (i.e., with respect B) in (67)#°

ADG answers this question by first translating it to an equivalent question about
convergence in the structure shéafThat is to say,

can one define limits and convergence in the skeaf coefficients?

To see that this translation is effective, one should realize¢hdefine the deriva-
tive of &5 one need only be able to take limits and study convergence in the space
where the latter takes values, which, according to (654 (X)! Thus, ADG has

——
given so far the following two answers to the question wéigiiy ) is well defined:

1. WhenA is a topological algebra sheaf (Mallios, 1998a,b, 2001a, Manu-
script in preparation).

2. WhenA is Rosinger’s algebra of generalized functions (Mallios, 2001a,
manuscript in preparation).

For in both case#é has a well-defined topology and the related notion of
convergence.

In section 5, where we give a finitary, causal, and quantal version of the
vacuum Einstein equations for Lorentzian gravity (53)—them too derived from a
variation of a reticular E-H action functiondky;, we will give a third example of
algebra sheaves—the finsheaves of incidence algebras—in which the notions of
convergence, limits, and topology (the so-called Rota topology) are well defined

S0 as to “justify” the corresponding differentiation (variati@ﬁ))i.
The discussion above prompts us to make the following clarification:

to “justify” the derivation of Einstein’s equations from varyiff) with respect taD,
one need not study the topology i (¢") per se. Rather, all that one has to secure is
that there is a well-defined notion of (local) convergenca 7

66This question would also be of relevance if for instance one asked whether the map/(jra(&})
is continuous.

67This is another example of the general working philosophy of ADG according to which the un-
derlying space or “domain” so to speak (héa(s1)) is of secondary importance for studying
“differentiability.” For the latter, what is of primary importance is the algebraic structure of the
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This is how ADG essentially evades the problem of dealing directly with the
“complicated” topology of\a(e").

We conclude this discussion of the E-H action functia®@land its variation
yielding the vacuum gravitational equations, by giving a concise ADG-theoretic
statement about th@auge) invariance of the firsthich in turn amounts to the
(gauge) covariance of the second. Eét= (€, p) be our usual (real) E-L vector
sheaf (of rank 4) an® a spin-Lorentzian gravitational metric connection on it
whose curvatur& is involved in€$(D) above. Then,

the Einstein-Hilbert functiondl §) is invariant under the action of a (localpreserving
gauge transormation, by which we mean a (local) element (i.e., local section) of the
structure group sheafluta& = £F = Aut, € of Y = (€, p), which, in turn, is a
subsheaf ofAuta &€, where locally, AutaE(U) = GL(4,A(U)) = GL(4,A)(V).

3.3.2. A Brief Note onr, the Hodge-* Operator, and on Self-Duality in ADG

Below, we discuss brieflp la ADG the volume element or measuseap-
pearing in the E-H action integral (69), as well as the Hodge-* operator and the
self-dual Lorentzian connectiont" associated with it, thus prepare the ground for
a brief comparison we are going to make subsequently between our locally finite,
causal, and quantal vacuum Einstein gravity and an approach to nonperturbative
canonical quantum gravity based on Ashtekar’s new variables (Ashtekar, 1986).

1. Volume elementLet (X, A) be our usuaK-algebraized space arftia
free A-module of finite rankn over X, which is locally isomorphic to the
“standard” oné\". Let alsop be a strongly nondegenerate (and indefinite,
in our case of interest) metric & which makes it gseudo-Riemannian
free A-module of finite rank n over.X'hen, one considers the sequence
€ = (€)1<i<n Of global sections of ~ A"(i.e, ¢ € A"(X) = A(X)")—
the so-calledKronecker gauge oA".%8 Then, the volume element

objects that live on that domain. For the notion of derivative, and differentiability in general, one
should care more about the structure of the “target space” or “range” (here the structure sheaf space
A) than that of the “source space” or “domain” (here the base sigeeafter all, the generic base
“localization” spaceX employed by ADG is assumed to be just a topological space without hav-
ing been assigned a priori any sort of differential structure whatsoever. Of cautbe, classical
case, X is completely characterized, as a differential manifold, by the corresponding structure sheaf
Ay = CP ofinfinitely differentiable (smooth) functiofia particular, see our comments on Gel'fand
duality in subsection 5.5.1). In other words, the classical differential geometric notions “differential
(ie, C*°-smooth) manifold” and “the topological algete’ (X)” are tautosemous (i.e., semantically
equivalent) notions. Alas, other more general kinds of differentiability may come from algebraic
structuresA other tharC*(X) that one may localize sheaf-theoretically (as structure shéayes
on an arbitrary topological spacé This is the very essence of ADG and will recur time and again
in the sequel.

68|n ADG, this appellation fok is reserved for positive definite (Riemannian) metrcgMallios,
1998a), but here we extend the nomenclature to include indefinite metrics as well.
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associated with the givel-metric p is defined to be
@ = +/|plein .. .A €n € (A"AM)(X) = (detA")(X) = A(X) (71)
That is to say,

the volume elementr is a nowhere vanishing (becausds nondegener-
ate) global section of the structure shédafMoreover, sinceA"A")*(X) =
(AM(AM*)(X)(detA™)*(X) = A(X), = can be viewed as a®(X)-linear mor-
phism on detA™) and, as such, as a mapAfnto itself: @ € (EndA)(X) =
EndA = A(X).

The crux of the argument here is that the definition (71)}wofreadily
applies to the case wheb¢ is an Einstein space andT, p) our usual
(real) Lorentzian vector sheaf on it. This is so because, as mentioned
earlier,£" is a locally freeA-module of rank 4, that is, locally (i.eU -
wise) inX : £ ~ A% Hence, the volume element appearing in (69) is
now an element oA(U). Of course, since, by definitiod, is afine sheaf
here toowr can be promoted to a global section&fo € A(X)).

2. Hodgex. As with the volume elements, let (£, p) be a pseudo-
Riemannian (Lorentzian) fre&-module of rankn and recall from (12)
the canonicalA-isomorphismo~between theA-modules€ and its dual
&* induced byp. That is to say£ 2 E* = Homa(€, A). We define the
following A-isomorphisms« of A-modules

x 1 APEF - ANTPE* (72)
To give x's sectionwise action, we need to define first, for any
v e A"PE(X),
vt = (ATPP)(v) € ATTPEN(X) = (ATTPE(X)) (73)

so that then we can define
W) :=aaUAV)=UAVY) T e A(X) (74)

foru e APE*(X) = APE(X)* .

Two things can be mentioned at this point: first, that forithentity
or unit global sectionl of A, *1 = @, and second, that entails anA-
isomorphism of thé\-module defined by the exterior algebrafsf AE*,
into itself. The latter means, in turn, thats an element ofduta (AE*).

The mapx of (72) and (74) is the ADG-theoretic version of the usual Hodge-
operator induced by th&-metric o.

3. Self-dual Lorentzian connectiont". Now that we have at our disposal,
we can define a particular class of Y-M A-connectidd$ on vector
sheaves, the so-calleglf-dual connectionsvhose gauge potential parts
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AT are coinedself-dual gauge fieldsSo, we let €, p, D) be an L-Y-M
field on an L-Y-M spaceX. The definition ofD*s pertains to the property
thattheir curvatures=+ := F(D™), satisfy relative to the Hodgeduality
operator

«Ft=Ft (75)

hence their namself-dual
In view of (75) and the second Bianchi identity (49), we have

82qe(F1) = (F1)M3H L D" 25)(F ) = (- 1)F3 « D"2(FH)
= ()"« DZ e (FH) =0 (76)

the point being that the (field strengtits" of the) self-dual connections

D™ also satisfy the Y-M equations. We will return to self-dual connections
in section 5, where we will discuss the close affinity between our finitary,
causal, and quantal version of vacuum Einstein-Lorentzian gravity and a
recentapproach to nonperturbative quantum gravity which uses Ashtekar’s
new (canonical) variables (Ashtekar, 1986).

3.4. Y-M and Gravitational Moduli Space: G-Equivalent Connections

In the present subsection we will give a short account of the ADG-theoretic
perspective on moduli spaces of L-Y-M connections, focusing our attention on the
corresponding moduli spaces of spin-Lorentzian (vacuum) gravitational connec-
tions that are of special interest to our investigations in this paper.

To initiate our presentation, we consider a (real) Lorentzian vector sheaf
ET = (&, p) and we recall from subsection 2.4 the affine spagés) of metric
A-connections on it (54). From our discussion@kheaves in subsection 2.2,
we further suppose that' is the associated sheaf of the principal shgaf.=
AutaET = Aut,E—the group sheaf of-preservingA-automorphisms of (the
structure group sheaf &f', which is also the (local) invariance group of the free
Y-M action functional)Mi(D) (Mallios, 1998a,b¥® Our main contention in this
section is that

the (global) gauge grouduta €1 (X) = Auta &' = £7(X) := Aut, £ acts onthe affine
spaceAa (E1) of metricA-connections on the Lorentzian vector shéaf= (£, p).

Let us elaborate a bit on the statement above, which will subsequently lead us to
define moduli spaces of gauge-equivalent connections.

691n the case of the functiondl$)D on (€1, D) we saw in the previous subsection thatits (local) invari-
ance (structure) group is precisely (Ad)(U) :=T'(U, AutaE®) = (Aut,&)U) =: £1(U) ~
Lt
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We have already alluded to the fact, in connection with the (local) transforma-
tion law of gauge potentiald of A-connection® on general vector sheavEésat
the end of subsection 2.1, that one may be able to establish an equivalence relation
A~ A between themg a local gauge transformation (i.e., a local section of the
structurgj-sheafduta (£) of G; g € Auta(E)(U) = GL(n, A)(U)). We can extend
this equivalence relation from the gauge potentil® their full connectiond,
as follows.

Schematically, and in general, for Anmodule€ we say that two connections
D andD’ on it are gauge-equivalent if there exists an elengeatAut(£) making
the following diagram commutative

c—2 59

9[ lg@lnzg@)l (77)
& — Q&)
which is read as
Dog=Q@®1DoD&D =@gR1DoDog? (78)
or in terms of the adjoint representation &J(f the structure groug > g
D' =goDogt=gDg!=: Ad(g)D (79)
Itis now clear that
(78) and (79) define an equivalence relatibron Aa(€) : D 2 D, g e Aute. 2 is
precisely the equivalence relation defined by the action of the structure grogmAut
£ onAa(€), as alluded to above.
Thus, it is natural to consider the followirigzactiona on Ax(£)
a P AUE x Aa(E) — An(E) (80)
defined pointwise by
(9. D)~ (9, D) =g- D =g(D) = gDg " = Ad(g)D (81)
with the straightforward identification from (78)
9(D)=gDg ' =(g® 1) oDog " € Home(E, Q(E)) (82)
In turn, for a giverD € Aa(E), a delimits the following set itAa (£)
={g-D e Aa(£) : g € Aut&}
={D € Ap(&): D LD, for someg € Autf} (83)
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called the orbit of arA-connectiorD on £ under the actiore of the gauge group
G = Aut€ on Ax(E). Op consists of all connectior®’ in Ax(£) that are gauge-
equivalent taD.

Following (Mallios, 1998a,b), we also note thatit can be shown that the gauge-
orbit Op in (83) can be equivalently written in terms of the induced connection
Denae as follows:

Op = {D — Denae(9)9 7" : g € Aut} (84)

At the same time, thstability group O(D) of D € Aa(E) under the action of
Aut(€) is, by definition, the set of alj € Aut€ such thalg - D = D, so that

O(D) = ker(DgpgeiAute) = {9 € AULE 1 Denae(9) = O}
={geAut€ :[D,q]:=Dg—gD =0} (85)

which means that the stability group of the connectiba Ax(£) consists of all
those (gauge) transformations&fg € Autf) that commute withD.

Atthis point, and before we define moduli spaces of gauge-equivalent connec-
tions ADG-theoretically, we would like to digress a bit and make a few comments
on the possibility of developing differential geometric ideas (albeit, not of a classi-
cal, geometrical*°-smooth sort, but of an algebraic ADG kind) on the affine space
Aa(E). The remarks below are expressed in order to prepare the reader for com-
ments on the possibility of developing differential geometry on the gauge moduli
space of gravitational connections that we are going to make in subsection 5.3 in
connection with some problems (e.g., Gribov’s ambiguity) people have encoun-
tered in trying to quantize general relativity (regarded as a gauge theory) both
canonically (i.e., in a Hamiltonian fashion) and covariantly (i.e., in a Lagrangian
fashion). It is exactly due to these problems that others have also similarly felt
the need of developing differential geometric concepts and constructions (albeit,
of the classical¢*>°-sort) on moduli spaces of Y-M and gravitational connections
(Ashtekar and Lewandowski, 1994, 1995).

As a first differential geometric idea ol (£), we first define a set of ob-
jects (to be regarded as abstract “tangent vectors’) that would qualify atatie “
gent spactof Aa(E) at any of its pointsD, and then, after we define mod-
uli spaces of gauge-equivalent connections below, we also define an analogous
“tangent space to the moduli space at a gauge-orti®p of a connection
D e AA(E)

We saw earlier (2.4) that fof a vector sheaf of rank, the affine space
Aa(€) can be modelled aft&R*(Ende)(X). We actually define the latter space to
be the sought aftértangent spaceof Ax(£) at any of its*points’ D. That is to
say.

T(AA(E), D) := QY(ENDE)(X) (86)
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and we recall from the foregoing th@t(£nd<)(X) is itself anA(X)-module which
locally, relative to a gaugd , becomes tha x n-matrix of 1-formsA(U)-module
Ma(©24(U)) = Ma(21)(U).7

We are now in a position to define tigdobal moduli space or gauge orbit
space of thé\-connections o0&, as follows:

M(E) = AaE)/AutE .= | ] Op=) 0p (87)
DeAL(E) b

The epithet “global” above indicates that the quotient in (87) can be actually
localized—something that comes in handy when one, as we do, works with a
vector sheaf on X and the latter is gauged relative to a local frauhe- {U}. The
localization ofM (£) means essentially that one usesgheaf of germs of moduli
spaces of thé-connections of the module or vector sh&ah focus To see this,

the reader must realize that, dsranges over the open subsetsXafone deals

with a (complete) presheaf of orbit spaces equipped with the obvious restriction
maps. To follow this line of thought, one first observes the inclusion

Ar(E)lu € Aay(&u) (88)

and a similar restriction of the structure group shga$ .Aut€. Then, sectionwise
overU one has

(AutE)|U = (AutE)U) = Isomyu (Elu, Elu)
= Zsomyu (Elu, EIU)U) = Aut(Elu)(U) = Aut(Ely) (89)
thus, in toto, the following local equality
AutE(U) = Aut(E|U) (90)

for every operJ in X.
So, in complete analogy to (81), one has the action of &yf(on the local
setsAa(E)|u of A-connections in (88)

Aut(€lu) x Aa(E)lu = Aa(E)lu (91)
entailing the following “orbifold sheaf” of gauge-equivalektconnections o
M(E) = Aa(E)/ AutE (92)

70 As a matter of fact, one can actually prove (86) along classical lines—for example, by fixing a point
D in the affine spac@a (£), regard it as “origin” (i.e., the zero vector 0), let a cupug) in Aa(£)
pass through it (i.e D = Dy = y(0)), and then find the vector(t) tangent toy. This proof has
been shown to work in the particular case the structure shésf topological vector space sheaf
(Mallios, 1998, 2002) (and in section 5 we will see that it also works in the case of our finsheaves
of incidence algebras for deriving the locally finite, causal, and quantal vacuum Einstein equations
for Lorentzian gravity); in fact, we used it in (67) and (68) to derive the vacuum Einstein equations
from a variational principle on the space of Lorentzian connections.
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M(E) is the aforesaid sheaf of germs of moduli space&-agbnnections ol

Finally, it must also be mentioned here, in connection with the local iso-
morphism& ~ A" of a vector sheaf mentioned earlier, that{uta&)(U) above
reduces locally tg7 £(n, A)(U) = GL(n, A(U)), as follows?*

(Auta&)(U) = Aut(Elu) = Aut(A"|y) = (AutA™)(U)
= Mp(A)*(U) =GL(n, A)(U) = GL(n, A(V)) (93)
We can distill this to the following remark:

any local automorphism of a given vector sh&aif rankn over one of its local gauges
U is effectively given by a local automorphism Af—that is to say, by an element of
GL(n, A(U)) = GL(n, A)(U) = GL(n, Aly).

so that the gauge (structure) grodpitaE of £ is locally (i.e.,U-wise) reduced
to the group sheaf £(n, A),”? as it has been already anticipated, for example, in
subsection 2.1.2 in connection with the transformation law of gauge potefitials,
and earlier in connection with vacuum Einstein Lorentzian gravitg bn

As noted before, now that we have defined moduli spaces of gauge-equivalent
connections, and similarly to the “tangent spatéAa (&), D) in (86), we define
T(Op, D)—the “tangent spaceto a gauge-orbit of an eleme®® € Aa(E), D)
and,in extensp T (M(E), Op—the“tangent spackto the moduli space & at
an orbit of D € Aa(€). We have seen how the inducAeconnection of the vector
sheafénde

Dende & ENKE — QHEN) (94)

can be viewed as the “covariant differential” of the connectidin A5 (£). By
defining the induced coderivati\ségndg adjointtoDp e as

5§ndg - QYENdE) — EndE (95)
we define
Sp=D+kewl 4 ={D+UecAr): 54 (U) =0 (96)

for u € QY(Ende)(X). Of course, fou = 0 € QY(EndE)(X), one sees thad be-
longs toSp, so that

Sp isasubspace @ka (£) throughD. Infact, one can show (Mallios, 1998b, manuscript
in preparation) thafp is an affineC-linear subsepace @ka (£) through the poinD,
modelled after (ke:‘)réndg(X).74

"In the case of ", the local reduction below has already been anticipated earlier.
720r equivalently, to its complete presheaf of sectib§ £(n, A)).

73See remarks after (9).

74(ker8éndg(X) being in fact a sut(X)-module ofQ(EndE)(X).
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Moreover, and this is crucial for definirig(Op, D), one is able to prove (Mallios,
1998b, manuscript in preparation) that

iMDnge © Kew g g, = QHENE)(X) =: T(Aa(E), D) (97)

for any local gaugd®) of £.
In toto, since bottD ¢ and81n are restricted on the gauge group &ut
and in view of (84), one realizes that

T(OpD) = iM(Dgnge auts) = KeBrnde Aute) (98)

where “L” designates “orthogonal subspace” with respect toAthmetricp on €.
Thus,

Sp is the orthogonal complement of the tangent sp(@p, D) to the orbitOp of
D at the pointD of Aa(E).

At the same time, for “infinitesimal variationsi € Q*(£nd€)(X) aroundD e
Aa(£), one can show (Mallios, 1998b, manuscript in preparation)

T(Opiu, D+ u) =im((D + U)gnde Aute)
= im((Dgndg + u)|Autg) = {(Dgndg + u)g :€ Aut&}
(99)

Concomitantly, to arrive &t (M (£), Op) one realizes (Mallios, 1998b, manuscript
in preparation) thahe gauge grouput€ acts onAa (€) in away thatis compatible
with its affine structure

That is to say, one has

gD+u)=gD+gu, VgeAutf and ue QYEndE)(X)  (100)

The bottom line of these remarks is thdi(€) := Aa(£)/AutE can still be con-
strued as an affine space modelled afteR'(EndS)(X)/Aute ~

(im (Dengejaute))” = SD.
Hence one concludes that

T(M(€), Op) ~ Sp (101)

Now that we haveM (), we are in a position to define similarly moduli
spaces of (self-dual) spin-Lorentzian connections. Of course, our definition of
“tangent spaces” o@®p and onM () above carries through, virtually unaltered,
to the particular (self-dual) Lorentzian case. As noted above, this will become
relevant in section 5 where, in view of certain problems that both the canonical
and the covariant quantization approaches to quantum general relativity (based on
the Ashtekar variables) encounter, the need to develop differential geometric ideas
and techniques on the moduli space of (self-dual) spin-Lorentzian connections has
arisen in the last decade or so.
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3.4.1. Moduli Space of (Self-Dual) Spin-Lorentzian Connectidfis

The last remark prompts us to comment briefly on the space of gauge-
equivalent (self-dual) spin-Lorentzian connections on the (real) Lorentzian vector
sheaf€" = (€, p) of rank 4 which is of special interest to us in the present paper.
When the latter is endowed with a (self-dual) Lorentzian metric conne®fth
which (i.e., whose curvature scalR ) (D)) is a solution of (the self-dual ver-
sion of) (53)7® it is reasonable to enquire about other gauge-equivalent (self dual)
E-L fields €1, DM), with DH £ DH(g e G = AutaEM).

From what has been said above, one readily obtains the local gauge group of
et

AutaET(U) = Aut,E(U) = Aut,(E]y) =: £U) =~
LT ¢ Ma(A)*(U) = GL(4,A)(U) = GL(4,A(U)) (102)

and, like in (92), we obtain the localized moduli space (“orbifold sheaf”) of gauge-
equivalent (self-dual) spin-Lorentzi&sconnection®™) (or their gauge potential
partsA™)) on T

MO EN = A Autae? = AN/ Aut, € (103)

Finally, in a possible covariant quantization scenario for vacuum Einstein-
Lorentzian gravity that we are going to discuss in sectioABET) may be re-
garded as the (quantum) configuration space of the theory in a way analogous to
the scheme that has been proposed in the context of Ashtekar’s new variables for
nonperturbative canonical quantum gravity (Ashtekar, 1986; Ashtekar and Isham,
1992; Ashtekar and Lewandowski, 1994; Ashtekar and Lewandowski, 1995). In
connection with the latter, we note that since the main dynamical variable is a
self-dualspin-Lorentzian connectigh* ¢ (see end of subsection 3.3), the corre-
sponding moduli space is denoted by

MHEN = AP EN)/ AuET = AL (EN)/AuLE (104)

where, as we have already mentioned earlier, the (local) orthochronous Lorentz
structure (gauge) symmetrié®f £' can be writtenaduta £T(U) = Aut,E(U) =

ocality

Lt = s, 3) "2Y SL2,C) € My(C).77

7SWhich in turn means that(t, D)) = (&, p, cal D)) defines a (self-dual) E-L field.

760r again, locally, its gauge potential patt-.

77 Always remembering of course thiaf = SO(1, 3)! and its double covering spin-groi(2, C)
are only locally (i.e., Lie algebra-wise) isomorphic (i.&(2, C) ~ so(1, 3)!). Also, for a general
(real) Lorentzian vector sheaf { p) of rank n, which locally reduces " (i.e., it is a locally free
A-module), its local (structure) group of Lorentz transformation8ig,£(U) = SL(n, A)(U) =
SL(n, A(V)) Cc AutiaE(U) = GL(n, A)(U) = GL(n, A(U)) = Mp(A)*(U) = (Enda&)*(U).
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4. KINEMATICS FOR A FINITARY, CAUSAL, AND QUANTAL
LORENTZIAN GRAVITY

One of our main aims in this paper is to show that the general ADG-theoretic
concepts and results presented in the last two sections are readily applicable in the
particular case of theurved finsheaves of qauseerspective on (the kinematics
of) Lorentzian gravity that has been developed in the two past papers (Mallios
and Raptis, 2001, in press). In the present section, we recall in some detail from
(Mallios and Raptis, 2001), always under the prism of ADG, the main kinematical
structures used for a locally finite, causal and quantal version of vacuum Einstein
Lorentzian gravity, thus we prepare the ground for the dynamical equations to be
described “finitarily” in the next. In the last subsection (4.3), and with the reader
in mind, we give a conciseesung—a “causal finitarity” manual so to speak—of
some (mostly new) key kinematical concepts and constructions to be described en
passant below.

More analytically, we will go as far as to present a finitary version of the
(self-dual) moduli spacé1)(£1) in (103) and (104) above—arguabtize ap-
propriate (quantum) kinematical configuration space for a possible (quantum) the-
oresis of the (self-dual) spin-Lorentzian connectimfé) inhabiting the aforesaid
finsheaves of gausets. We will also present, on the basis of recent results about
projective and inductive limits in the categoBy7 of Mallios” differential tri-
ads (Papatriantafillou, 2000, 2001), as well as on results about projective limits
of inverse systems of principal sheaves endowed with Mall®sfonnections
(Vassiliou, 1994, 1999, 2000), the recovery, at the projective limit of infinite re-
finement (or localization) of amverse system of principal finsheaves of qausets
and reticular spin-Lorentzian connections on thesha structure that, from the
ADG-theoretic perspective, comes very close to, but does not reproduce exactly, the
kinematical structure of classical gravity in its gauge-theoretic guise—the principal
orthochronous Lorentzian fiber bund® over aC*>°-smooth space-time manifold
M endowed with a nontrivial (self-dual) smooth spin-Lorentzian conne@ch
on it (subsection 4.2% In this way, we are going to be able to make brief compar-
isons, even if just preliminarily at this early stage of the development of our theory,
between a similar differential geometric scheme on the moduli space of gauge-
equivalent spin-Lorentzian connections that has been worked out in (Ashtekar and

78The word “emulates” above pertains to the fact that our projective limit triad (as well as the principal
sheaf and spin-Lorentzian connection relative to it) will be seen not to correspond precisely to the
classical differential triadAy =X CY, 9, Q1), but to one that in the context of the present ADG-
based paper may be regarded agerferalized smoothriad (write smooth for short). This smooth
triad’s structure sheaf will be symbolized By, =% € to distinguish it from th&C$® employed in
the classical case. Onthe other hand, we will be using the same symbols for the flat 0-th order nilpotent
derivationd® = 9 as well as thé\-module of first-order differential form@? in theC*°-smooth and
the usuatC*°-smooth triads.



1522 Mallios and Raptis

Lewandowski, 1995), like ADGhrough entirely algebraic method% However,
and this must be stressed from the start,

unlike (Ashtekar and Lewandowski, 1995), where projective limit techniques are used
to endow (a completion of) the moduli space of gauge-equivalent connections with a
differential manifold-like structure, thus (be able to) induce to it classical differential
geometric notions such as differential forms, exterior derivatives, vector fields, vol-
ume forms, etc., we, with the help of ADG, already possess those at the finitistic and
guantal level of the curved finsheaves of qausets. Moreover, our projective limit result—
the smooth differential triad, Lorentzian principal sheaf and nontrivial connection on
it which, as noted above, closely resembles the clas€i€atliferential triad as well

as the principal orthochronous Lorentz sheaf (bundle) and its associated curved lo-
cally Minkowskian vector sheaf (bundle) over t6&-smooth manifold M of general
relativity—only illustrates the ability of our discrete algebraic (quantal) structures to
yield at the (correspondence) limit of infinite localization or refinement of the qausets
a structure that emulates well the kinematical structure of classical Lorentzian gravity
(Mallios and Raptis, 2001, 2002; Raptis and Zapatrin, 2000, 2001). At the same time,
and perhaps more importantly, this indicates, in contrast to (Ashtekar and Lewandowski,
1995) where projective limits are employed to produlike“from like' (i.e., induce a
classical differential geometric structure from inverse systems of differential manifolds),
what we have repeatedly stressed here, namely that, to do differential geometry—the
differential geometric machinery so to speak—is not inextricably tied t6 thesmooth
manifold, so that we do not depend on the latter to provide us with the standard, and by
no means unigque, necessary or “preferred,” differential mechanism usually supplied by
the algebra’>°(M) of smooth functions on the differential manifoM as in the clas-

sical case. Our differential geometric machinery, as we shall see in the sequel, comes
straight from the (incidence) algebras inhabiting the stalks of vector, differential module
and algebra sheaves like the generic locally #emodulesE of ADG above, over a
finitary topological base space(time) without mentioning at all any differential structure
that this base space should a priori be equipped with, and certainly not the classical
C*>-manifold one. In other words, our differential geometric machinery does not come
from assuming’yy as structure sheaf in our finitary, ADG-based constructins.

We would like to distill this to the following slogan that time and again we
will encounter in the sequel:

Slogan 1. Differentiability derives from (algebras in) the stalk (in point of fact,
from the structure shedf of coefficients or generalized arithmetics), not from the
base spac#.

"SFor, to recall Grauert and Remmert: “The methods of sheaf theory are algebraic.” (Grauert and
Remmert, 1984). The purely algebraic character of ADG has been repeatedly emphasized in the
leterature (Mallios, 1998a,b, 2001a, 2002, manuscript in preparation; Mallios and Raptis, 2001, in
press; Mallios and Rosinger, 1999, 2001).

80A similar point was made in footnotes 11 and 67, for example. We will return to discuss it in more
detail in the concluding section.

81 As we have said many times, the classical case corresponding to taking for basX {paegion
of) the smooth manifoldV and forAx its structure sheaf$°—the sheaf of germs of sections of
infinitely differentiable functions oiX.
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Then, the upshot of our approach to all the structures to be involved in the
sequel is that

in the spirit of ADG (Mallios, 1998a,b, 2001a; Mallios and Raptis, 2001, in press;
Mallios and Rosinger, 1999, 2001) and what has been presented so far here along
those lines, everything to be constructed below, whether kinematical or dynamical,
is manifestly independent of a backgroufieb-smooth space-time manifoll, its
“structure group” DiffM) and, as a result, of the usual differential geometry (i.e.,
calculus) that such a base space supports. In a nutshell, our (differential) geometric
constructions are genuinely backgrouwrid-manifold free.

Interestingly enough, such a position recurs time and again]eisraotivso to
speak, in the Ashtekar quantum gravity program (Ashtekar, 1994, 2002). But let
us now go on to more details.

4.1. Principal Finsheaves and Their Associated Finsheaves of Qausets

First, we give a short account of the evolution of our ideas leading to (Mallios
and Raptis, 2001) and (Mallios and Raptis, in press) which the present paper is
supposedto continue as it takes a step further into the dynamical realm of Gausets.

4.1.1. A Brief History of Finitary Space-Time and Gravity

Our entire project of developing a finitary, causal, and quantal picture of
space-time and gravity started with Sorkin’s work on discrete approximations of
continuous space-time topology (Sorkin, 1991). Briefly, Sorkin showed that when
one substitutes the point events of a bounded rediafi a topological (i.e.C°)
space-time manifolt¥l by “coarse” regions (i.e., open set$)about them belong-
ing to a locally finite open covér; of X, one can effectively replace the latter by
locally finite partially ordered sets (pose®)which areTp-topological spaces in
their own right and, effectively, topologically equivalentXo Then, these posets
were seen to constitute inverse syste%s—_ (PR, =) of finitary topological spaces,
with the relationP; > P, being interpreted as “the act of topological refinement or
resolution ofP; to P;.”8 Sorkin was also able to show, under reasonable assump-
tions about X¢* that the PPs are indeed legitimate substitutes of it in that at the

82For a more detailed and thorough description of the conceptual history of our work, as well as of its
relation with category and topos theory, the reader is referred to the recent work (Raptis, 2002). A
topos-theoretic treatment of finitary, causal, and quantal Lorentzian gravity is currently under way
(Raptis, manuscript in preparation).

83Meaning essentially that the open coveriggof X from which P, derives is a subcover of (i.e.,
coarser thari){; . Roughly, the latter contains more and “smaller” open sets aksyioints than the
former. In this sense, acts of “refinement,” “resolution,” or “localization” are all synonymous notions.
That s, one refines the coarse open sets apoint events and in the process she localizes them
(i.e., she effectively determines their locus) at higher resolution or “accuracy.” As befits this picture,
Sorkin explicitly assumes th#te points of X are the carriers of its topolog§orkin, 1991).

84For instanceX was assumed to brelatively compacfopen and bounded) and (at leagt)
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inverse or projective limit of infinite refinement, resolution, or localization of the
U, s and their associateRls, one recovers th@-regionX (up to homeomorphism).
Formally one writes

homeo

lim g) I|m P =P, X (105)

Subsequently, by exploring ideas related to Gel'fand du&lityhich had already
been anticipated in (Zapatrin, 1998), Raptis and Zapatrin showed how to associate
a finite d|men5|onal associative, and noncommutaticelenceRotaK-algebra

Q; with everyP in 99 and how these algebras can be interpreted as discrete and
guantum topological spaces bearing a nonstandard topology, calledth&pol-

ogy, on their primitive spectfa (Raptis and Zapatrin, 2000). They also showed,

in a way reminiscent of the Alexandrov—Cech construction of nerves associated
with locally finite open covers of manifolds, haive Rs may be also viewed as
simplicial complexeés as well as, again by exploring a variant of Gel'fand duality,
how there is a contravariant functor between the cateffoof finitary substitutes

P, and poset morphisrfisbetween them, and the categ@wf the incidence al-
gebrasx?;, associated with th& s and injective algebra homomorphisms between
them. Below, we would like to highlight three issues from the investigations in
Raptis and Zapatrin (2000):

1. Since the&?;s are objects dual to thé s which, in turn, are discrete homo-
logical objects (i.e., finitary simplicial complexes) as mentioned above,
they (i.e., the incidence algebras) can be viewedissrete differential
manifoldgDimakiset al., 1995; Dimakis and Muller-Hoissen, 1994, 1999;
Zapatrin, 1996). Indeed, they were seen to be reticular spaces

A‘ D
—
=P af= 90 e ele...=AoD (106)

PEZy

of Z-gradedA;-bimodulesD; of (exterior) differential formgzip(p >
1)®° related within eacl®; by nilpotent Cartan-Kahler-like (exterior) dif-
ferential operatorg” : @7 — P

85We will comment further on Gel'fand duality in the next section.

86That is, the sets of the incidence algebras” primitive ideals which, in turn, are kernels of irreducible
representations of the; s.

87See also (Zapatrin, 1996, in press) about this.

88 Monotone maps continuous in the topology of fs.

8n (106), Aj = QP is a commutative subalgebra £ calledthe algebra of coordinate functions
in Qi while D; = @ipzl, a linear subspace @&;, calledthe module of differentials ovek;. The
elements of each linear subspa’@ﬁ of Q; in D; were seen to be discrete analogues of (exterior)
differential p-forms. We also note that in the sequel we will use the same boldface syimbaht
“ID;” to denote the algebra of reticular coordinates and the module of discrete exterior differentials
over it as well as the finsheaves thereof.
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2. Since now th&;s are seen to be structures encoding not only topological,
but also differential geometric information, it was intuited that an inverse—
or more accurately, since the incidence algebras are objects Gel'fand-
dual to Sorkin’s topological posets—a direct syst¥ra= {Q; } of theQ;s
should yield, now at theirect or inductive limitof infinite refinement of
thelfs as in (105), an algebi@,, whose commutative subalgebra part
A corresponds t&9C>(X)—the algebra of K = R, C-valued) smooth
coordinates of the point-events ¥f while Q% in Dy, to the ® ¢ (X)-
bimodules of smooth differentigb-forms cotangent at each and every
point-event of X which, in turn, can now be regarded as being a smooth
region of aC>-manifold M.*® We will return to discuss further this limit
in subsection 4.2.

3. The aforesaid continuum limit was physically interpreted as Bohr's corre-
spondence principle, in the following sense: the local (differential) struc-
ture of classical*°-smooth space-time should emerge at the physically
“ideal” (or operationally “nonpragmatic’) limit of infinite localization of
the alocal, discrete, and quantal algebraic subsfeata

In the sequel, following Sorkin’s dramatic change of physical interpretation
of the locally finite poset$? in (Sorkin, 1991) from finitary topological spaces

%In retrospect, and as we shall see in the sequel from an ADG-theoretic perspective, that initial
anticipation in (Raptis and Zapatrin, 2000, 2001)—that is, that at the inductive limit of infinite
localization of theQjs one should recover the classical smooth structure@f ananifold—was
wrong, or better, slightly misled by the classi€&P-theory. In fact, as noted earlier, on the basis of
ADG results about inverse and direct limits of differential triads, we will argue subsequently that at
the continuum limit one recovers a smooth algebra struét@ré (X) andC>°(X)-bimodulesQ?,
of smoothp-forms over it, and that both of which may be regarded as “generalized,” albeit close,
relatives of the corresponding classi€&t-ones. Thus, rather than directly anticipate that one should
obtain the local smooth structure o’&°-manifold at the inductive limit of infinite refinement (of
the incidence algebras), perhaps it is more correct at this point just to emphasize that passing from
the poset to the incidence algebraic regime one catches a glimpse not only of the topological, but
also of the differential structure of discretized space-time. This essentially showlsllifferential
operator—the heart and soul of differential geometrgemes straight from the algebraic structure
Equivalently,incidence algebras provide us with a (reticular) differential geometric mechanism
something that the “purely topological” finitary posets were unable to supply since they are merely
associative multiplication structures (i.e., arrow semigroups, or monoids, or even poset categories)
and not linear structures (i.e., one is not able to form differences of elements in them). This remark
will be of crucial importance subsequently when we will apply ADG-theoretic ideas to these discrete
differential algebras.

91For further remarks on this limiting procedure and its physical interpretation, the reader is referred
to (Mallios and Raptis, 2001, 2002; Raptis and Zapatrin, 2000, 2001; Zapatrin, 2001). We will return
to it in an ADG-theoretic context in the next subsection where, as noted above, we will show that
one does not actually get the classi€&l-smooth structure at the continuum limit, bu%-smooth
one akin to it. We will also argue that this (i.e., that we do not get back thesmooth space-time
manifold at the projective/inductive limit of our finitary structures) is actually welcome when viewed
from the ADG perspective of the present paper.
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to causal seticausetsﬁ (Bombelliet al., 1987)% the corresponding reticular

and quantal topological spac@s, where similarly interpreted agiantum causal
sets(qausets)fzi (Raptis, 2000¥® Qausets, like their causet counterparts, were
regarded as locally finite, causal, and quantal substrata underlying the classical
Lorentzian space-time manifold of macroscopic gra¥itpn the other hand, it

was realized rather early, almost ever since their inception in (Bomdtedl,,

1987; Sorkin, 1997), that causets are sound models ddtieenatical structuref
(Lorentzian) space-time in the quantum deep, so that in order to address genuinely
dynamical issuesis-a-vis quantum gravitycauset theory should also suggest a
dynamics for causets. Thuspw can one vary a locally finite po&ethas become

the main question in the quest for a dynamics for catfsé®aptis, 2002).

It was roughly at that point, when the need to develop a dynamics for causets
arose, that ADG entered the picture. In a nutshell, we intuited that a possible,
rather general answer to the question abovbyisheaf-theoretic medns the
sense that the fundamentally algebraic methods of sheaf theory, as employed by
ADG, could be somehow used to model a realm of dynamically varying causets
or, preferably, due to a quantum theoresis of (local) causality and gravity that we
had in mind, of their qauset descendants.

However, to apply the concrete sheaf-theoretic ideas and techniques of ADG
to gausets, it was strongly felt that we should somehow marry first Sorkin’s original
finitary posets in (Sorkin, 1991) with sheaves proper. THingary space-time
sheaveffinsheaves) were defined as spaged (algebras of) continuous functions
on Sorkin'sTy-posetsP, that were seen to Hecally homeomorphito each other
(Raptis, 2000bj¢ The definition of finsheaves can be captured by the following

92For a thorough account of this semantic switch from posets as discrete topologies to posets as locally
finite causal spaces, the reader is referred to (Sorkin, 1995).

93The reader should note that, in accordance with our convention in (Mallios and Raptis, 2001, in
press; Raptis, 2000a), from now on all our constructions referring to reticalesalstructures like
the B s and their associate®d s, will bear a right-pointing arrow over them just to remind us of their
causal interpretation. (Such causal arrows should not be confused with the right-pointing arrows over
inductive systems.)

94That causality, as a partial order, determines not only the topology and differential structure of
the space-time manifold as alluded to above, but also its conformal Lorentzian metric structure of
(absolute) signature 2, has been repeatedly emphasized in (Boetlé&)l1987; Sorkin, 1990, 1997,
manuscript in preparation).

95Rafael Sorkin in private correspondence.

9%That is, one formally write® > U :’;‘i S (U) wherer; is the continuous projection map from the
sheaf spac§ to the base topological poskt, a; its inverse (continuous local section) map &hdn
open subset d?, . In other words, for every opdiin P, : 7 0 0;(U) = UR,[VU € P, : o; = nfl]
(i.e., 0i is a local homeomorphism havirig for inverse) (Mallios, 1998; Raptis, 2000). Here we
symbolize these finsheaves By= Sp,.
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commutative diagram which we borrow directly from Raptis (2000b)

X—'" ,p

o= n‘ll lnil = 0j (107)
= S

WhereC is the usual sheaf of germs of continuous functions<emvhile f; and
f are contmuous surjections from the topological spa(:emdco to the finitary
topological spaceB, andS, respectively.

Now, the diagram (107) above prompts us to mention that the complete anal-
ogy between Sorkin’s flnltary topological pos&sand finsheaves; rests on the
result that an inverse systegl (S, &) of the latter was seen in (Raptis, 2000)
to possess a projective limit she®f, = Spo.” that is homeomorphic t6%—the
sheaf of germs of sections of continuous functions on the topological space-time
manifold X. That is to say, similarly to (105), one formally writes,

im 5 = lim S =S e 09 (108)
One could cast the result above as a limit of commutative diagrams like the one in
(207) which defines finsheaves, as follows:

T
R — S

fij 4> =ij 4 ij

P 4 S

fioo o fij =0 fice I =ico Sioo 4 fino 1= o 0 1
lim P = P, "X cg’( LS, = iim s, (109)
o0 <1

with fj; andf;; i contlnuousmjectlons—the ‘refinement” or “localization arrows’—
between thé® S in P and theSsin S, respectively?

97From (105),Pys, xMOMe0 X
98These arrows capture precisely the partial order (or net) refinement relatiand > between the
finitary posets inP and their corresponding finsheavessh respectively, as (109) depicts (e.g.,

f
we formally write: B, BN Pj = B >jj R). Also from (109), one notices what we said earlier in
connection with (105) and (108), namely, thatand CE’( are obtained at the categorical limit of
infinite (topological) refinement or localizatior {, and=;.,) of the 'S and the§ S, respectively.
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Having finsheavesin hand, our next goal was to materialize ADG-theoretically
our general answer to Sorkin’s question mentioned above. The basic idea was the
following:

Since sheaves of (algebraic) objects of any kind may be regarded as universes of vari-
able objects (Mallios, 1998a; Mac Lane and Moerdijk, 1992), by (sheaf-theoretically)
localizing or “gauging” the incidence Rota algebras modelling qausets over the finitary
topological poset$; or their locally finite causet descenda®s® the resulting fin-
sheves would stand for worlds of variable gausets—ones varying dynamically under
the influence of a locally finite, causal, and quantal version of gravity in vacuo which,
in turn, could be concisely encoded in nonflat connections on those finsheaves (Mallios
and Raptis, 2001). Moreover, and this cannot be overempahasized here, by using the
rather universal shealf-theoretic constructions of ADG, we could carry virtually all the
usualC*-differential geometric machinery on which the mathematical formulation of
general relativity rests, to the locally finite setting of finsheaves of gausets (Mallios
and Raptis, in press)—the principal differential geometric objects being, of course, the
aforesaid connections on the relevant finsheaves, which implement the dynamics of
gausets.

Thus, as a first step i in this development we set out to defumwd prin-
cipal f|nsheave§>T AUtA. = Q Aut.ﬂ. of qausets, and their associated

flnsheaveﬂﬁ = (), overa causeP. .100 By establishing finitary versions of the
classical general relativistic principles of equivalence and locality, we realized
that the (local) structure (gauge) symmetrie(hf are finitary correspondents

of the orthochronous Lorentz Lie group (i.e., Iocallyﬁ’n one writes formally:

99For instance, one could regaél as a topological space proper by assigning a “causal topol-
ogy” to it, as for example, by basing such a topology on “open” sets of the following kind:
I_(x):={y e P 1y > x}(vVx € P) (“lower” or “past-set topology"), or dually oh™(x) := {y €
Pox— y} (“upper” or “future-set topology’), or even on a combination of both—i.e., on “open”
causal intervals of the following sor&(x, y) := 17(x) N 1 ¥ (y) (the so-called Alexandroff topol-
ogy). It is one of the basic assumptions about the causets of Setlah that the cardinal-
ity of the Alexandroff setsA(x, y) is finite—the so-called local finiteness property of causets
(Bombelli et al, 1987). As basic open sets generating the three topologies above, one could
take the so- calledoverlng past, covering future and null AIexandrtn‘pen” sets, respectively.
These ard (X){y € B (y—=>x)A(Az € P y—>z— X)L IF(x){y € B X—=>¥Y)A(A €
Pix—z— y)}andAg(x, y) = 0R,(x = y) A (B € B:x—>z— y) respectively. Note the
immediate arrowsn the Hasse diagram of any posetappearing in the definition df, 1., and
An(X, y) are calledcovering relationsor links and they correspond to the transitive reduction of
the partial order based at each vertex in the directed and transitive graphimturn, the three
topologies mentioned above can be obtained by taking the transitive closure of these links (Mallios
and Raptis, in press; Raptis, 2000a).)

1001 what follows we will be often tempted to use the same epitcipal, for both the|3iTs and
their associate®®;s. We do hope that this slight abuse of language will not confuse the reader. As
we will see in the sequel, this identification essentially rests on our assuming a general Kleinian
stance towards (physical) geometry whereby “states” (of a physical system) and the “symmetry
group of transformations of those states” are regarded as being equivalent.
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ﬂtAiﬁﬁ(U) =Sq1, 3?),101 and that they could thus be organized into the
aforesaidgi -finsheavesﬁﬁ. Then, by definition, thés are the associated fin-
sheaves of the principdt's.

From the start we also realized that the localization or “gauging” of qausets
in thePﬁS and their associat@@t s meant that these finsheaves could be endowed
with nontrivial (i.e., nonflat) reticular spin-Lorentzian connecti@sa la ADG.
Indeed, in complete analogy to the general ADG case, after having defined reticular
flat connections as the following-linear and sectionwise Leibniz condition (2)-
obeying finsheaf morphisms

P=3:0 =A — O (110)
asin (1), as well as higher order extensions
dP: P — o, mNap>1) (111)

between the vector subshea\fe%of i, we defined in Mallios and Raptis (2001)
nonflat connection§3i on the finsheave§2i of finite dimensional differential
A;-bimodules ;102 again as the followingK-linear and sectionwise Leibniz
condition-obeying (4) finsheaf morphisms

D& =0 — &®; =%E) (112)

similarly to (3)%¢ Moreover, in complete analogy to the local expression for the
abstractDs in (8), the finitaryD; s were seen to split locally to

Di =d + A, (fli e Q1(U), U open in|3|) (113)

and the reticular gauge potentlaJs of the Dis above were readily seen to be
Aut. -valued local sections 0@1 (i.e., “discrete”sq(1, S)T ~ sl(2, C);-valued
local 1-forms)i%4 in analogy with both the classical and the abstract (ADG) theory.

101ywhere U is an open set iR regarded as a causal-topological space (see footnote 99 above).

102The reader should have gathered by now that in the stalks of the structure finsheavesll the
(causal versiond; of the) abelian (sub)algebras (of ©;) in (106) while in the fibers ob; the
(causal version®; of the) Aj-modulesD; in (106).

103The reader should note in connection with (112) that the “identificationz fli* tacitly assumes
that there is a (Lorentzian) metrig on the vector sheave® effecting canonical isomorphisms
f), between them and their dual differential module (covector) finsh@veas in (12). We will
give more details aboyii and the implicit identification of the finitary vectors & with their
corresponding forms if2; shortly. For the time being, we note that we would like to @ll“the
(finitary, (c)ausal, and (g)uantal (v)acuum dynahffcqv-dynamo) for a reason to be explained
in the next section.

1040f course, since th&;s are curved, they do not admit global sections (Mallios, 1998a; Mallios
and Raptis, 2001). In view of the name “fcqv-dynamo” we have giverf);coin the previous
footnote, its gauge potential paﬁi may be fittingly coined dcqv-potential The fcqv-potential,
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At this point, we must stress a couple of things about these finitary spin-
Lorentzian connection®; vis-a-vis the general ADG theory presented in the
previous two sections.

1. Aboutthe base spacasitwas mentioned in literature (Mallios and Raptis,
2001, manuscript in preparation; Raptis, 2000b), in our finitary regime
there are mild relaxations of the two basic conditionpafacompactness
andHausdorffneséT,-ness) that ADG places on the base topological space
X on which the vector sheavéshearing connectior® are soldered. As
noted in footnote 84, the starting regiohof the topological space-time
manifold M from which theP, s (and their associate?} s) come from was
assumed in (Sorkin, 1991) to belatively compacand (at least];. If one
relaxes paracompactness to relative compactnesslaness tol;-ness
(and we are indeed able to do so without any loss of generélitgne is
still able to carry out in the locally finite regime the entire spectrum of the
ADG-theoretic constructions described in the last two sec$ns.

2. Aboutthe stalk: Lorentzian metric and its orthochronous symmefries
stalks of theﬂ s are occupied by qauseﬂB in other words, they are the

like its abstract analoguein (6)—(8), is am x n-matrix of sections of local reticular 1-forms (i.e.,
A = (ﬂipq) e ML(Q1(U)), U openinPy). Also, since the local structure of the gauge gréupf the
Qi sis the reticular orthochronous Lorentz Lie algedn@, 3f, we will denote the vector finsheaves
& above aéf = (Ei , o), in accord with our notation earlier for the (real) orthochronous Lorentzian
vector sheave§' = (&€, p of rank 4 in the context of ADG. (However, to avoid uncontrollable
proliferation of symbols and eventual typographical congestion of indices, superscripts, etc., we
will not denote the dual spac@ s of the&,'s by ) Moreover, notice that, as it was mentioned in
Mallios and Raptis (2001), the “finitarity index i” ao(1, Sf indicates that the Lie group manifold
S, 3)! of (local) structure gauge symmetries of the qausets is also subjected to discretization
as well. It is reasonable to assume tfiaitary structures have finitary symmetriesequivalently
and perhaps more populartliscrete structures possess discrete symmeffigs is in accord with
our abiding to a Kleinian conception of (physical) geometry, as noted in footnote 100. On the other
hand, we shall see in the next section that the finitarity index indicates only that our structures are
“discrete” andnot that they are essentially dependent on the locally finite covering (gafigs)
X. In fact, we will see that (from the dynamical perspective) our constructionefzeeently gauge
U;-independenand for this reasondiocal’ (Mallios and Raptis, 2001; Raptis and Zapatrin, 2000,
2001). In other words, the (dynamical) role palyed by the base localization s, in extenso,
by the regionX of the Lorentzian space-time manifold that the latter discretizes relati4g, tis
physically insignificant.

105|n fact, as noted in both Raptis and Zapatrin (2000, 2001), at the finitary poset level one must
actually insist on relaxing Hausdorffness, becausk-finitary substitute in (Sorkin, 1991) is
automatically trivial as a topological space—that is, it carries the discrete topology, or equivalently,
it is a completely disconnected set (no arrows between its point vertices).

10| fact, we could have directly started our finsheaf constructions straight from a paracompact and
Hausdorff X without coming into conflict with Sorkin’s results. For instance, already in Mallios
and Raptis (in press) we applied the entire sheaf-cohomological panoply of ADG to our finsheaves
of qausets.
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spaces where the (germs of the) continuous local sections 6 thtake
values. These qausets, as it has been argued in (Mallios and Raptis, 2001),
determine a metrig; of Lorentzian signature. Thus, as it was emphasized

in footnote 20 of subsection 2.2; is not carried by the base spaég

which is simply a topological space; rather, it concerns directly the (objects
living in the stalks of the) relevant finsheayes se In fact, we may define

this metric to be the following finsheaf morphism:

b El @& — A (114)

which, like its abstract versiop in (11), isA, -bilinear between the (dif-
ferentlaI)A. moduIeSQI concerned and (sectionwise) symmetpiclt
foIIows that theAI metrlc C preserving (local) automorphism group finsheaf
-AUtA. |U€P = Autp, & lucp Is the aforesaid principa-finsheaf
PiT(U) = ,Llutpi & (U) =S0(1, 3A (U))iT of reticular orthochronous
isometries of the (real) Lorentzian finshelf = (&}, 5;) of rank 4108

Also, in accordance with Sorkiet al’s remakr in (Bombelliet al.,
1987) thata (locally finite) partial order determines not only the topological
and the metric structure of the Lorentzian manifold of general relativity,
but also its differential structure, we witness here that the aforementioned
nilpotent Cartan-lahler (exterior) dlfferentlalsip which as we saw in

(111) effect vector subsheaf morphlsdfs. Qi — Qip“(Z > p=>0),
derive directly from the algebraic structure of tilps—that is to say,
again straight from the stalk of the finsheaves of gausets without any
dependence on the base cauBetvhich is simply a causal-topological
space. We cannot overemphasize this either:

Differentiability in our finitary scheme, and according to ADG, does not de-
pend on the base space (which is assumed to be simply a topological space);
the differential mechanism comes staright from the stalk (i.e., from the al-
gebraic objects dwelling in it) and, a fortiori, certainly not from a classical,
C*-smooth base space-time manifold.

107)n connection with footnote 103, we note that we tacitly assume&hat (&, 5i) in (114) is the
dual to?; (i.e., (ﬁi = (‘ff* = HomA(fiT, A )). Itis also implicitly assumed that in (114) induces
a canonical isomorphism betweéﬁ and its duak; analogous to (12). Thus, with a certain abuse
of language, but hopefully without causing any confusion, we will assumeﬁhat 5f (i.e., we
identify via p; finitary covectors and vectors) and use them interchangeably in what follows.
108gince, as noted in footnote 18, specific dimensionaity arguments do not interest us here as long as
the algebras involved in the stalks of our finsheaves are (and they are indeed) finite dimensional,

the reader may feel free to choose an arbitrary, finite raftc our finsheaves. Then, the reticular
n-1

LorentzianA, - -metricg; involved will be ofabsolute signature— 2 (i.e. .51 = diag(-1, f1+1..+p)and
its local invariance (structure) group SOfil+- 1; A (U)' (U open inP, as usual).



1532

Mallios and Raptis

3. About the physical interpretatio’We would like to comment a bit on

the physical interpretation of our principal finsheaves of gausets and the
reticular spin-Lorentzian connections on them. First we must note that
Sorkin et al, after the significant change in physical interpretation of
the locally finite posets involved from topological in (Sorkin, 1991) to
causal in (Bombellet al,, 1987; Sorkin, 1990, 1995, 1997, manuscript in
preparation) alluded to above, insisted that, while the topological posets
can be interpreted as coarse approximations to the continuous space-time
manifold of macroscopic physics, the causets should be regarded as being
truly fundamental structures in the sense that the macroscopic Lorentzian
manifold of general relativity is an approximation to the deep locally finite
causal order, not the other way around.

Our scheme strikes a certain balance between these two poles. For
instance, while we assume a base causet on which we solder our inci-
dence algebras modelling qausets, that causet is also assumed to carry a
certain topology—the “causal topolod§®*—so that it can serve as the
background topological space on which to solder our algebraic struc-
tures, which in turn enables us to apply ADG to them thus unveil po-
tent differential geometric traits of the qausets in the stalks, as described
above. This causal topology however, in contradistinction to SorRig's
topological posets which modelickened space-like hypersurfa@eson-
tinuous space-time (Sorkin, 1991), is regarded as a theory of “thickened”
causal regions in space-time (Mallios and Raptis, 2001; Raptis, 2000a;
Raptis and Zapatrin, 2001 Furthermore, as it has been emphasized
in (Mallios and Raptis, 2001), while the nonflat reticular spin-Lorentzian
connection®; on the corresponding; s can be interpreted as the funda-
mental operators encoding tharving of quantum causalitfhus setting
the kinematics for a dynamically variable quantum causality, an inverse
systemE = {(PiT, Di)} was intuited to “converge” at the operationally
ideal (i.e., nonpragmatic and “classical” in Bohr's “correspondence prin-
ciple” sense (Raptis and Zapatrin, 2000)) limit of infinite refinement or
localization of both the base causets and the associated qauset fibers over
them to the classical principal fiber bundfe( D) of continuous local or-
thochronous Lorentz symmetries(1, 3)' of the C*°-smooth space-time
manifold M of general relativity and thel(2, C)-valued spin-Lorentizian
gravitational connectio® on it11! Since P, D) is the gauge-theoretic

109gee footnote 99.

110For more on this, see subsection 4.3 below. _

111For more technical details about the projective limit®f the reader must wait until the following
subsection. At this point it must begtressed up front, in connection with footnote 78, that what we
actually get at the projective limit off is aC*>-smooth principal bundle (and its spin-Lorentzian
connection) over the regioX of a “generalized differential manifold” (i.eC*°-smooth)M.
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version of the kinematical structure of general relativity—the dynamical
theory of the classical field of local causal@y, ,'*? each individual mem-

ber (75iT, f)i) ofthe inverse syste(rﬁ was interpreted as the kinematics of a
locally finite, causal, and quantal version of (vacuum) Einstein-Lorentzian
gravity!® In toto, we have amalgamated aspects from the interpretation
of both the finitary substitutes and the causets, as follétvs:

“Coarse causal regions” are truly fundamental, operationally sound, and phys-
ically pragmatic, while the classical pointé&-smooth space-time manifold
ideal5 Curved finsheaves of qause (= £, D;) model the kinematics

of dynamical (local) quantum causality in vacuo as the latter is encoded in
thefcquynamoﬁi . A generalized (i.e C™-smooth) version of the classi-

cal kinematical structure of general relativit§ {, D), over the differential
space-time manifoldM, arises at the ideal and classical (Bohr’s correspon-
dence) limit of infinite localization of the gausets—in point of factgof'®

4. About “reticular” differential geometry The basic moral of our appli-
cation of ADG to the finitary regime as originally seen in Mallios and
Raptis (2001) as well as here, but most evidently in Mallios and Raptis (in
press), is that the fundamental differential mechanism which is inherent
in the differential geometry that we all are familiar withis indepen-
dent ofC*°-smoothness so that it can be applied in full to our inherently
reticular modeles, or equally surprisingly, to spaces that appear to be ul-

112For recall that the spacetime metgg, (), for everyx € M, delimits a Minkowski lightcone based
atx (by the equivalence principle, the curved gravitational space-time manifold of general relativity
is, locally, Minkowski space, i.e., flat, and in this sense general relativity may be viewed as special
relativity being localized or “gauged’). Thus, the Einstein equations of general relativity, which
describe the dynamics gf,, (which, in turn, can be interpreted as the field of the 10 gravitational
potentials), effectively describe the dynamical change of (the field of) local causality. All this was
analyzed in detail in Mallios and Raptis (2001).

113as we shall see in the next section, the actual kinematical configuration space for the locally finite,
causal, and quantal vacuum Einstein gravity is the moduli sphcef finitary spin-Lorentzian
connections); . As we shall see, projective limit arguments also apply to an inverse system of such
reticular moduli spaces.

4Eurther distillation and elaboration on these ideas, see subsection 4.3.

115More remarks on “coarse causal regions” will be made in subsection 4.3.

118This is a conciseesun® of a series of papers (Mallios and Raptis, 2001, in press; Raptis, 2002;
Raptis and Zapatrin, 2000, 2001; Mallios, 1998b). Of course, “infinite localization” requires “infinite
microscopic power” (i.e., energy of determination or “measurement” of locution) which is certainly
an ideal (i.e., operationally nonpragmatic and physically unattainable) requirement. This seems to
be in accord with the pragmatic cutoffs of quantum field theory and the fundamental lantre
Planck length) that the “true” quantum gravity is expected to posit (and below which it is expected
to be valid), for it is fairly accepted now that one cannot determine the locus of a quantum particle
with uncertainty (error) less thadrnp =~ 10-3° m without creating a black hole. This seems to be the
raison d&tre of all the so-called “discrete” approaches to quantum space-time and gravity (Mallios
and Raptis, 2001).

117 Albeit, just from the classical (i.e*°-smooth) perspective.
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trasingular and incurably pathological or problematic when viewed from
the differential manifold’s viewpoint (Mallios and Rosinger, 1999, 2001;
Rosinger, in press). In our case, what is startling indeed is that none of the
usual “discrete differential mathematics” (e.g., difference calculus, finite
elements, or other related Regge calculus-type of methods) is needed to
address issues of differentiability and to develop a full-fledged differen-
tial geometry in a (locally) finite setting. For instance, there appears to
be no need for defining up-frontiscrete differential manifoldsand for
developing a priori and, admittedly, in a physically rather ad hoc manner
a “discrete differential geometipn thent€ in order to investigate differ-
ential geometric properties of “finitary” (ordered) spatéd-or they too

can be cast under the wider axiomatic, algebraico—sheaf-theoretic prism
of ADG as a particular application of the general theory. All in all, it

is quite surprising indeed that the basic objects of the usual differential
geometry like “tangent” vectors (derivations), their dual forms, exterior
derivatives, Laplacians, volume forms, etc., carry through to the locally
finite scene and none of their discrete (difference calculus’) analogues is
needed, but this precisely proves the point:

One feels, perhaps “instinctively” due to one’s long-time familiarity with
and the numerous “habitual” (but quite successful') applications of the usual
smooth calculus where the differential mechanism comes from the supporting
space (i.e., it is provided by the algeli#té (M) of infinitely differentiable
functions on the differential manifollll), that in the “discrete” case too some
novel kind of “discrete differential geometry” must come from a “discrete dif-
ferential manifold’-type of base space—athié differential calculus follows
from, or at least that it must be tailor-cut to suit, spate other words, in

our basic working philosophy we have been misled by the habitual applica-
tions and the numerous successes of the smooth continuum into thinking that
differentiability comes from, or that it is somehow vitally dependent on, the
supporting space. By the present application of ADG to our reticular models
we have witnessed how, quite on the contrdifferentiability comes from the
stalk—i.e., from algebras dwelling in the fibers of the relevant finsheaves—
and it has nothing to do with the ambient space, which only serves as an
auxiliary, and in no way contributing to the said differential mechanism,
topological sapce for the sheaf-theoretic localization of those algebraic ob-
jects. The usual differential geometric concepts, objects, and mechanism that
relates that latter still apply in our reticular environment and, perhaps more
importantly, in spite of it.

118| ke, e.g., the perspective adopted in the literature (Baedl, 1995; Dimakiset al., 1995; Dimakis
and Muller-Hoissen, 1994, 1999).
119 jke graphs (directed, like our posets here, or undirected), or even finite structureless sets.
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4.2. Projective Limits of Inverse Systems of Principal Lorentzian Finsheaves

Continuous limits of finitary simplicial complexes and their associated inci-
dence algebras, regarded as discrete and quantal topological spaces (Raptis and
Zapatrin, 2000, 2001), have been studied recently in the literature (Zapatrin, 2001,
in press). In this subsection, always on the basis of ADG, we present the pro-
jective limit of the mverse systen§y = {(P,T, DT)} of principal Lorentzian fin-
sheaves of qauseis equipped with reticular spin-Lorentzian connecudﬂ%
which was supposed in Mallios and Raptis (2001) to yield the classical kinemati-
cal structure of general relativity in its gauge-theoretic guise—that is, the princi-
pal orthochronous spin-Lorentzian bundle over the (regloof the) C*°-smooth
space-time manifol® of general relativity locally supporting ai(2, C)-valued
(self-dual) smooth connection (i.e., gauge potential) 1-fof?. We center our
study on certain results from a recent categorical account of projective and in-
ductive limits in the categor0¥ of Mallios’ differential triads in the literature
(Papatriantafillou, 2000, 2001), as well as on results from a treatment of projective
systems of principal sheaves (and their associated vector sheaves) endowed with
Mallios’ A-connections in the literature (Vassiliou, 1994, 1999, 2000). Then, we
compare this inverse limit result, at least at a conceptual level and in a way that
emphasizes the calculus-free methods and philosophy of ADG, with the projec-
tive limit of a projective family M1 of compact Hausdorff differntial manifolds
employed in Ashtekar and Lewandowski (1995) to endow the moduli sg#Ge
of gauge-equivalent nonabelian Y-M and gravitational connections with a differen-
tial geometric structure. In fact, we will maintain that an inverse systeof our
finitary moduli spaces should yield at the projective limit of infinite localization
a generalized version (i.e.,@°-smooth one) of the classical moduli spagg;)
of gauge-equivalent (self-dualy°-connections on the regioK of the smooth
space-time manifold/.

The concept pillar on which ADG stands is that ofliferential triad T =
(A, 9, ) associated with & = R, C-algebraized spaceX( A). In ADG, differ-
ential traids specialize to abstract differential spacehile theAs in them stand
for (structure sheaves ofipstract differential algebras of generalized smooth or
differentiable coordinate functionand they were originally born essentially out
of realizing that

the classical differential geometry of a manifotdis deduced from its structure sheaf
CY, the latter being for the case at issue the result of the very topological prop&tties
of the underlying “smooth” manifolck.

Thus, in effect, the first author originally, and actually quite independently of
any previous relevant work, intuited, built, and subsequently capitalized on the
fact that the algebra sheafof generalized arithmetics (or abstract coordinates) is

120pgincag lemma (Mallios and Raptis, in press; Mallios and Rosinger, 1999).
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precisely the structure that provides one with all the basic differential operators and
associated “intrinsic differential mechanism” one needs to actually do differential
geometry—the classical,™°-smooth, theory being obtained precisely when one
choose<}y as one’s structure sheaf of coordinat®sThus, the objects dwelling

in the stalks ofA may be perceived asgebras of generalized (or abstract) “in-
finitely differentiable” (or “smooth”) functionswith the differential geometric
character of the base localization spackeft completely undetermined—in fact,

it is regarded as being totally irrelevant to ADB.

In Papatriantafillou (2000), the differential triads of ADG were seen to con-
stitute a categoryD¥—the category of differential triadsObjects in©¥ are
differential triads and morphisms between them represent abstract differentiable
maps. InND¥ one is also able to form finite products and, unlike the category
of smooth manifolds where an arbitrary subset of a (smooth) manifold is not a
(smooth) manifold, one can show that every objgdh D% has canonical sub-
objects (Papatriantafillou, 2000). More importantly however, in Papatriantafillou
(2001) it was shown thaD¥ is complete with respect to taking projective and
inductive limits of projective and inductive systems of triads, respectigeljhis
is a characteristic difference betwe®ff and the category of manifolds where the

121yet, we can still note herewith that the first author arrived at the notiondifferential triadas a
particularization to the basic differentials of the classical theory of the amply ascertained throughout
the same theory instrumental role played by the notion ok@a C$°)-connection (i.e., covariant
differentiation).

1220t course, as also noted earlier in footnote 67, in the classical case (i.e., when one identifies
Awm = Cfy) there is a confusion of the sorivho came first the chick or the egy8ince one to
identify the underlying space(time) (i.e., tfi&°-smooth manifoldV) with its structure shedf}; of
smooth functions and, more often than not, one is (mis)led into thinkingltfiatentiability—the
intrinsic mechanism of differential geomesy to speak—comes (uniquely) from the underlying
smooth manifold. This is precisely what ADG highlightelifferentiability comes in fact from the
structure sheaf, so that if one chooses “suitable” or “appropriate” (to the problem one chooses
to address) algebras of “generalized smooth” functions other ti&i{M), one is still able to do
differential geometry (albeit, of a generalized or abstract sort) in spite of the clas€i®akmooth
base manifold

123|n fact, Papatriantafillou showed that projective/inductive systems of differential triads having ei-
ther a common, fixed base topological spacéwrite ‘T (X)), or a projective/inductive system
thereof indexed by the same set of indices (WBi€X;)), possess projective/inductive limits. Be-

low, we will see that our projective/inductive systeﬁa = {(ﬁiT, Dj )} of finitary posets (causets;
principal) finsheaves of incidence algebras (qausets) over them and reticular spin-Lorentzian con-
nections on those finsheaves, are precisely of the second kind. The reader should also note here
that in the mathematics literature, “projective,” “inverse” and “categorical” limits are synonymous
terms; so are “inductive” and “direct” limits (also known as “categorical colimits’). The result from
Papatriantafillou (2001) quoted above can be stated as folthes:ategory® T is complete and
cocompleteThis remark, thatis to say, tH& ¥ is (co)complete will prove to be of greatimportance

in current research (Raptis, 2002) for showing that the category of finsheaves of gausets—which
is a subcategory dD‘T—is, in fact, an example of a structure known a®pos(Mac Lane and
Moerdijk, 1992)—a topos with a non-Boolean (intuitionistic) internal logic, tailor-made to suit the
finitary, causal, and quantal vacuum Einstein—Lorentzian gravity developed in the present paper.



Finitary, Causal, and Quantal Vacuum Einstein Gravity 1537

projective limit of an inverse system of manifolds is not, in general, a manifbld.
Moreover, Vassiliou, by applying ADG-theoretic ideas to principal sheaves (whose
associated sheaves are precisely the vector sheaves of ADG) Vassiliou (1994, 1999,
2000), has shown that when the flat differenti@lef the triads in the aforesaid
projective/inductive systems of Papatriantafillou are promoted (i.e., “gauged” or
“curved”) to A-connectionsD on principal sheaves, the corresponding projec-
tive/inductive systemsH;, D;)*?* have principal sheaves endowed with nonflat
connections as inverse/direct limits.

Thus, in our locally finite case, the tnpl@t(A =A, Dﬁ, =D, dp) is an
ADG-theoretic differential triad of a (f)initary, (c)ausal and (g)uantal kind.
other words, the catego® <t having for objects the differential triadg and
for arrows the finitary analogues of the triad-morphisms mentioned above is a

subcategory o T calledthe category of fcg-differential triadSo, we letT :=

{Zi } be themixed projective—inductiveystem of fcg-differential triads B Treq.12°

By straightforwardly applying Papatriantafillou’s results (Papatriantafillou, 2000,
2001) to the inversedirect systef we obtain a projective —inductive limit triad

Too = (A =5K2 €%, QP dR) (write: T, = I|m T= I|m {I. }) here called C*-

smooth drfferentlal triad,” consisting of the structure she(ﬁ of generalized
infinitely differentiable (i.e.C*-smooth) functions onX, as well as of (sheaves

124From a categorical point of view, this fact alone suffices for regarding the abstract differential spaces
(of structure sheaves of generalized differential algebras of functions and differential modules over
them) that the ADG-theoretic differential triads represent as being more powerful and versatile
differential geometric objects thai°-manifolds. As also mentioned in Papatriantafillou (2001), it
was precisely due to the aforesaid shortcomings of the category of smooth manifolds that led many
authors in the past to generalize differential manifolddifferential spacei which the manifold
structure is effectively redundant (Heller and Sasin, 1995; Mostow, 1979; Sikorski, 1967, 1971).
In fact, the first author’s differential triads generalize b6ffi-manifolds and differential spaces,
and, perhaps more importantly for the physical applications, they are general enough to include
nonsmooth (“singular”) spaces with the most general, nonfunctional, structure sheaves (Mallios
and Rosinger, 1999, 2001; Rosinger, in press). On the other hand, a little bit later we will allude
to and, based on ADG and its finitary application herein, comment on an example from (Ashtekar
and Lewandowski, 1995) of an inverse system of differential manifolds that yields a differential
manifold at the projective limit.

125with (Z, >) a partially ordered, directed set (net) of indicés labelling the elements of the
inverse/direct systeny;, i)i). The systems7;, Di) are said to be (co)final with respect to the
index net , >). We remind the reader that in our cas&i$ the finitarity or localization index
(i.e., locally finite open coverd; of X ¢ M form a net (Mallios and Raptis, 2001, in press; Raptis,
2000b; Sorkin, 1991)).

126The term “mixed prorectrve -indcutive” (or equivalentlynixed inverse- drretjtsystem pertains to

the fact that the famrl)ﬂ' (implicitly) contains both the projective systefﬁ } of reticular
base causets, and the inductive sysfﬁmf gausets corresponding (by Gel'fand duality) to the

aforesaid causets. (Note that we refrain from putting right-pointing causal arrowsfaad R,
to avoid notational confusion.)
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QP over X of) “¥2€%(X)-bimodulesQ¥, of K-valued differential forms related
by exterior differentialsk -linear sheaf morphisms)?..

We can then localize or gauge the Cartaahl€i differentials of the fcg-
differential triads in®%cq as worked out in Mallios and Raptis (2001), thus

obtain the inverse syste@ = {(73iT, ﬁi)} alluded to abové*” As mentioned ear-

lier, the limits of projective systems of principal sheaves equipped with Mallios
A-connections have been established in (Vassiliou, 1994, 1999, 2000). Hence, by
straightforwardly carrying Vassiliou’s results to the finitary case, and as it was

anticipated in (Mallios and Raptis, 2001, in press), we get fhe;lields at the
projective limit a generalized classical princip2ii®-smooth (spin-Lorentzian)
fiber bundle (whose associated bundle is@fesmooth (co)tangent vector bun-
dle of K€*(X)-modules ofK-valued differential forms) endowed withsaooth
so(1, 3)'-valued connection 1-form over a (regionX of) the €*°-smooth space-
time manifold M?8 (Mallios and Raptis, 2001, in press). All in all, we formally
write

— i—oo i—o00 s 5 o
T = (Ax = %€, QP2,dR) = Im T = lim (%} = lim [(Ai, Di, dip)}
<« 00 <—I o0 <—I
(<K>7300, (K)Dw) —lim G = lim (B!, D))} (115)
<« 00 <1
and diagrammatically one can depict these limiting procedures as follows:
injective tri—l ad morphism injectivg; -fin—lsheaf morphism
‘ij __gauging (73.T, f)])

9j—Dj=0;+A; (116)

infinitel refinement infinitevl refinement

Too = lIMT 200, (<K>7>£o, (K)Doo) —1lim§

000 = Doo=000+Aco

127\We could have chosen to present the collectﬁ(ﬁiT, f)i)} as an inductive family of principal
finsheaves and their finitary connections, since the connections (of anypjrmfr in each of its
terms are effectively obtained by localizing or gauging the reticular differer&,f%lisu each term

of R. However, that we preserf§ dually, as an inverse system, is consistent with our previous
work (Mallios and Raptis, 2001, in press) and, as we shall see shortly, it yields the same result at
the continuum limit (i.e., th€ -principal bundle).

28\write () P,,,® D) for the C*-smooth principal bundle and its nontrivial spin-Lorentzian
connection.
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4.2.1. A Brief Note on Projective Versus Inductive Limits

We mentioned earlier the categorical duality between the catégarfini-
tary substitutes® and poset morphisms between them, and the catepofyhe
incidence algebra®; associated with thés and injective algebra homomor-
phisms between them, which duality is ultimately rooted in the general notion of
Gel'fand duality*?® In a topological context, the idea to substitute Sorkin’s finitary
topological posets by incidence Rota algebras was originally aimalgielbraiz-
ing spacdZapatrin, 1998)—that is to say, at replacing “space” (of which, anyway,
we have no physical experierié® by suitable (algebraic) objects that may be
perceived as living on that “space” and, more importantly, from which objects this
“space” may be somehow derived by an appropriate procedure (Gel'fand spatial-
ization). In fact, as briefly described before, again in a topological context and in
the same spirit of Gel'fand duality, the second author substituted SofRia’by
finsheaves§ of (algebras of) continuous functions that, as we said, are (locally)
topologically equivalent (i.e., locally homeomorphic) spaces toRlse(Raptis,
2000). Here too, the basic idea was, in an operational spirit, to replace “space” by
suitable algebraic objects that live on “it, and it was observed that the maximum
localization (finest resolution) of the point events of the bounded rejgionthe
CO-space-time manifold M by coarse, open regions about them at the inverse limit
of a projective system oP, s, corresponds (by Gel'fand duality) to definnig the
stalks ofC3—the sheaf of (germs of) continuous functions on the topological man-
ifold X—at thedirect limit of (infinite localization of)an inductive system of the
Ss13 At the end of Raptis (2000b) it was intuited that if the stalks of$fswere
assumed to be inhabited by incidence algebras which are discrete differential man-
ifolds as explained above. at the inverse limit of infinite refinement or localization
of the projective systen(jg of Sorkin’s topological posets yielding the continuous
base topological spack, the corresponding (by Gel'fand duality) inverse-direct
systemJ of finitary differential triads should yield the classical structure sheaf
Ay =© ¢ of germs of sections of (complex-valuéd)smooth functions oiX
and the sheafQy of (©C*(X)-bimodules of (complex) differential forms, in
accordance with Gel'fand duality.

There are two issues to be brought up here about this intuition at the end of
Raptis (2000b). Firstthing to mentionisthat, as alluded to earlier, itis more accurate
to say that, since the incidence algebras are objects categorically or Gel'fand dual
to Sorkin’s topological posets, and since the latter form an inverse or projective

1295ee our more analytical comments on Gel'fand duality in the next section.

130again, see more analytical comments on the “unphysicality” of space(time) in the next section.

131 And it should be emphasized that the stalks of a sheaf are the “ultra-local” (i.e., maximally localized)
point-like elements of the sheaf space (Mallios, 1998a; Raptis, 2000b).

132|n (Mallios and Raptis, 2001; Raptis, 2000a,b; Raptis and Zapatrin, 2000, 2001) it was tacitly
assumed that we were considering incidence algebras over th€fadldomplex numbers.
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systemfp the former should be thought of as constituting a direct or inductive
systemi)% of algebras possessifg>(X) and ®Q(X) over it as aninductive
limit.232 In fact, as mentioned in the previous paragraph, the stalk8 @i (in

fact, of any sheaf (Raptis, 2000b)), which are inhabited by germs of sections of
C*-smooth (K = R, C-valued) differential forms, are obtained precisely at that
inductive limit. We may distill all this to the following physical statement which
foreshadows our remarks on Gel'fand duality to be presented in the next section:

While “space (time)” is maximally (infinitely) localized (to its points) by an inverse
limit of a projective system of Sorkin’s finitary posets, the (algebraic) objects that live
on space(time) (i.e., the various physical fields) are maximally (infinitely) localized in
the stalks of the finsheaves that they constitute by a direct limit of an inductive system
of those finsheaves. Equivalently stated, “space(time)” is categorically or Gel'fand dual
to the physical fields that are defined on “it.”

The second thing that should be stressed here, and in connection with foot-
note 78, is that we do not actually get the classical differential geometric structure
sheaf“C® and the corresponding sheafx of ¥Q>°(X)-modules of differen-
tial forms. In toto, we do not actuaIIy recover the classi¢&l-smooth differ-
ential trladTOO = (Ax =K CY, 0, Ol %) at the limit of infinite localization of the

systemT but rather we get thgeneralized smootti.e., what we call her€*°-
smooth) triad Too = (Ax = ¥C¥, Q2 ,d). Of course, by the general theory

(i.e., ADG), we are guaranteed that the direct, cofinal sy§f&m‘1 generalized
discrete differential spaces’—that is, the fcg- -triakis= (A., D, d )—yields a
well-defined differential structure at the categorical colimit wn:mii moreover,
according to ADG, it is quite irrelevant whether the differential triad at the limit

is the classical smooth,, of the featureles€>-manifold proper or one for ex-
ample that is infested by singularities thus most pathological and unmanageable
when viewed from the classic@P°-manifold perspective (Mallios and Rosinger,
1999, 2001; Rosinger, 200%. The point we make here is simply that at the
continuum limit we gefa, notthe familiar C*°-smooth, differential structure on

the continuous topological’f) space-time manifolX. This differential structure

“for all practical purposes” represents for us the classical, albeit “generalized,”
differential manifold, and the direct limiting procedure that recovers it a general-
ized version of Bohr’s correspondence principle advocated in Raptis and Zapatrin
(2000). That this differential structure obtained at the “classical limit” is indeed
adequate for accommodating the classical theory will become transparent in the
next section where we will see that on the basi§gfwe can actually write the
classical vacuum Einstein equations of general relativity; albeit, in a generalized,

133Hence, _precisely speaking, the aforesaid fcg-differential triads constitute a mixed inverse-direct

systemj' having theC™-smooth differential triad¥,, as an inductive limit (Papatriantafillou,
2000, 2001).
134gee footnote 124.
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ADG-theoretic wayindependently of the usué@f°-manifold In fact, we wi(ll_see
that these equations are obtained at the inverse limit of a projective systef
vacuum Einstein equations—one for each membér. of

4.2.2. Some Comments on Real Versus Complex Space-Time and the General use
of the Number Field&® andC

As it has been already anticipated in (Mallios and Raptis, 2001; Raptis, 2002),
starting from principal finsheaves obmplex(K = C) incidence algebras carry-
ing nonflat reticular spin-Lorentziah; -connections; asC-linear finsheaf mor-
phisms between the “discrete” diﬁerent&l-bimodulesﬁip(p >1)in D;, com-
plex(bundles of) smooth coordinate algebras, modules of differential forms over
thent3 and smoottsa(1, 3)£—valued connection 1-formd (over a smooth com-
plex manifold) are expected to emerge at the inductive—projective limit of infinite
refinement and localization of the qausets and the principal finsheaves tfeéreof.
Thus it may be inferred that to recover the real space-time continuum of macro-
scopic relativistic gravity (general relativity), some sortedility conditionsmust
be imposed after the projective limit, the technical details of which have not been
fully investigated yet (Zapatrin, 2001, in press). The nature of these conditions is
a highly nontrivial and subtle issue in current quantum gravity research (Baez and
Muniain, 1994).

On the other hand, starting from incidence algebras ®&/¢K = R), one
should be able to recoverraal €*°-smooth manifold instead of a complex one
at the projective/inductive classical limit,” but then one would not be faithful to
the conventional quantum theory with its continuous coherent superpositions over
C.137 On the other hand, prima facie it appears to be begging the question to main-
tain that we have an “innately” or “intrinsically finitistic” model for the kinematical
structure of Lorentzian quantum space-time and gravity (and, as we shall contend
in the following section, also for the dynamics) when its (noncommutative) alge-
braic representation employs ab initio the continuum of complex numbers as the
field of (probability) amplitudes.

135That is to say, the generalized “classic&™ -smooth differential triadf ., mentioned above.

138|ndeed, in the context of nonperturbative (canonical) quantum gravity using Ashtekar’s new gravita-
tional connection variables, we will see in the next section how a holomorphic Lorentzian space-time
manifold and smooth, complex (self-dual) connections on it are the basic dynamical elements of
the theory.

137 And indeed, in the literature (Mallios and Raptis, in press; Raptis, 2000a; Raptis and Zapatrin, 2001)
the C-linear combinations of elements of the incidence algebras where physically interpreted as
coherent quantum superpositioosthe causal-topological arrow connections between the event
vertices in the corresponding causets. In fact, it is preciselyttiisear structure of the gausets that
qualifies them as sourglantumalgebraic analogues of causets, which are just associative multi-
plication structures (arrow semigroups or monoids or even poset categories). Also, in connection
with footnote 90, we emphasize that it is the linear structure of gausets (prominently absent from
causets) that gives them both their differential (geometric) and their quantum character.
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For example, in the light of application of ideas from presheaves and topos
theory to quantum gravity, Butterfield and Isham (2000), and more recently (Isham,
2002), have also explicitly doubted and criticized the a priori assumption and use of
the continuum of either the reals or, a fortiori, of the complexes in quantum theory
vis-a-vis the quest for a genuinely quantum theoresis of space-time structure and
gravity. In Isham (2002) in particular, Isham maintains that the use of the arithmetic
continua ofR (modelling probabilities and the values of physical quantities) and
C (probability amplitudes) in standard quantum mechanics is intimately related
(in fact, ultimately due) to the a priori assumption of a classical stance against
the “nature” of space and time—i.e., the assumption of the classical space-time
continuum. In the sequel, to make clear-cut remarks on this in relation to ADG,
as well as to avoid as much as we can “vague dark apostrophes,” by “space-time
continuum” we understand the locally Euclidean arena (i.e., the manifold) that
(macroscopic) physics uses up front to model space-time. Our contention then is
thatlsham questions the useRfandC in quantum theory precisely because he is
motivated by the quest for a genuinely quantum theoresis of space-time and,gravity
for in quantum gravity research it has long been maintained that the classical
space-time continuum (i.e., the manifold) must be abandoned in the sub-Planckian
regime where quantum gravitational effects are expected to be signifiedinis,
his basic feeling is that the conventional quantum theory, with its continuous
superpositions ove and probabilities irR, which it basically inherits from the
classical space-time manifold, must be modifiedaAgis quantum gravityn toto,
if the manifold has to go in the quantum deep, so must the numberiialddC of
the usual quantum mechanics, with a concomitant relatively drastic modification
of the usual quantum formalism to suit the non-continuum base space.{fime)
Perhaps the use from the beginning of one of the finite number #&J&8 for
c-numbers would be a more suitable choice for our reticular models, but then
again, what kind of quantum theory can one make out of them (Chris Isham in
private communication)? The contents of this paragraph are captured nicely by the
following excerpt from Isham (2002):

... These number systems [i.& andC] have a variety of relevant mathematical prop-
erties, but the one of particular interest here is that they are continua, by which—in
the present context—is meant not only tlRaandC have the appropriate cardinality,

but also that they come equipped with the familiar topology and differential structure
that makes them manifolds of real dimension one and two respectively. My concern is
that the use of these numbers may be problematic in the context of a quantum gravity
theory whose underlying notion of space and time is different from that of a smooth
manifold. The danger is that by imposing a continuum structure in the quantum theory

138Fqr instance, see the two opening quotations.
1393ee below.
140\jith “ p” a prime integer.
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a priori, one may be creating a theoretical system that is fundamentally unsuitable for
the incorporation of spatio-temporal concepts of a non-continuum nature: this would be
the theoretical-physics analogue of what a philosopher might call a “category.etror’

while, 2 years earlier (Butterfield and Isham, 2000), Butterfield and Isham made
even more sweeping remarks about the use of smooth manifolds in physics in
general, and their inappropriateness &igis quantum gravity:

... thefirst point to recognise is of course that the whole edifice of physics, both classical
and quantum, depends upon applying calculus and its higher developments (for example,
functional analysis and differential geometry) to the values of physical quantitiety

should space be modelled usii®y More specifically, we ask, in the light obdr
remarks above about the use of the continuum of the real numbers as the values of
physical quantities Can any reason be given apart from the (admittedly, immense)
“instrumental utility” of doing so, in the physical theories we have so far developed? In
short, our answer is No. In particular, we believe there is no good a priori reason why
space should be a continuum; similarly, mutatis mutandis for time. But then the crucial
question arises of how this possibility of a non-continuum space should be reflected
in our basic theories, in particular in quantum theory itself, which is one of the central
ingredients of quantum gravity .14

At this point it must be emphasized that in AD®,and C enter the the-
ory through the generalized arithmetics—the structure shgafvhich, as noted
earlier, is supposed to be a sheaf of commutdkive R, C-algebras (i.e.K =
R, C — A). In turn, these arithmetics are invoked only when one wishes to rep-
resent local measurements and do with them general calculations with the vector
sheaveg employed by ADG#? It is at this point that the basic assumption of
ADG that the€s involved are locally freé\-modules of finite rankn—that is to
say, locally isomorphic t&"—comes in handy, for all our local measurements and
calculations involvéd, A" and, in extenso, the latter’s natural local transformation
matrix groupAutE(U) = EndE(U)* = M, (A(U))*. Thusreal and complex num-
bers enter our theory through “the backdoor of measurement and calcufation
toto, through “geometry” as understood by ADG.

141Excerpt from ‘Whence the Continuu?hin (Butterfield and Isham, 2000). These remarks clearly
pronounce our application here of ADG, which totally evades the uS¥atalculus, to finitary
Lorentzian quantum gravity (see also remarks below).

1425ee sections 2 and 3, and in particular the discussion in subsection 4.3 next.

143This is in accord with our view of mentioned earlier as the structure carrying information about the
“geometry,” about our own measurements of “it all” (see footnotes 20, 44, the end of subsection 2.3
and subsection 4.3 next). In agreement with Isham’s remarks in (Isham, 2002) briefly mentioned
aboveit is we, with our classical manifold conception of space and time, who liagd C into
our models of the quantum realfihe quantum deep itself has no “numbers” as such, and it is
only our observations, measurements—in effect, “geometrizations—of “it all” that employs such
c-numbers (Bohr’s correspondence principlgature has no number or metric; we dress Her in
such, admittedly ingenious, artifac(see footnote 20 and also the following one). On the basis
of ADG and its finitary application to Lorentzian quantum gravity here, shortly we will go a step
further than Isham and altogether question the very notion of “space-time” in the quantum realm.
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On the other hand, and in connection with the last footnote, since the con-
structions of ADG are genuinely independent of (the usual calculuon)
manifoldsi*4, whether real (analytic) or complex (holomorphic; Mallios, 1998a,b,
2001a, 2002; Mallios and Raptis, 2001, in press; Mallios and Rosinger, 1999,
2001), Isham’s remarks that the appearance of the arithmentic continua in quantum
theory are due to the a priori assumption of a classical space-time continuum—a
locally Euclidean manifold—do not affect ADG. Of course, we would actually
like to have at our disposal the usual number fields in order to be able to carry
out numerical calculations (and arithmetize our abstract algebraic sheaf theory)
especially in the (quantunphysicalapplications of ADG that we have in miri¢p.

We may distill all this to the following:

In the general ADG theory, and in its particular finitary application to quantum gravity
here, the commutative number fields, which happen to be locally Euclidean continua
(i.e., the manifoldsR ~ R? and C ~ R? being equipped with the usual differential
geometric—i.e.C*°-smooth—structure), do not appear in the theory from assuming up
front a background space-time manifdftf. Rather, they are only builtinto our general-
ized arithmetic algebra sheafx, thus they are of sole use in our local calculations and
“physical geometrization” (i.e., “analysis of measurement operations”) of the abstract
algebraic theory. As such, they are not actually liable to Isham’s criticism and dtibts,

for ADG totally evades the base geometric space-time manifold.

For instance, from our ADG-theoretic perspective, this independence of measure-
ment from an “ambient” space-time continuum and its focus solely on the (physical)
objects (fields) per se that live on that background “space(time)’—and perhaps more
importantly, regardless of whether the latter is a “discrete” or a continuous manifold

Thus, under the prism of ADG, the question whether space-time is “classical” or “quantum” should
be put aside and the doubts of usiRgandC in quantum theory should not be dependent in any
way on the answer to that question.

144|n fact, of any “background space-time structure,” whether “continuous” or “discrete.”

145For recall FeynmanThe whole purpose of physics is to find a number, with decimal points etc.
Otherwise, you haven't done anythi&eynman, 1992)—and arguably, numbers are obtained by
measurements, observations, and the general “instrumental/operational-geometrical activity” that
physicists exercise (in their local laboratories, “with clocks and rulers” so to speak) on Nature.
Numbers are not Nature’s owrThus, both the arithmetics, as encoded in the abelian algebra
structure sheaf\, and theA-metric p relative to it, lie on the observer’s (i.e., the classical) side
of the quantum divide and are not “properties” of quantum systems—they are our own “devices”
(see footnote 20). This brings to mind Aeschylus” remark in “Prometheus Bobhdtiber, the
most ingenious of human inventiogeschylus, 1983) (notwithstanding of course the innumerable
modern debates among the philosophers of mathematics whether “number” is a creation of the
human mind or whether it exists, in a nonphysical Platonic world of Ideas, “out there”).

146F0r, as we have time and again emphasized in this paper, ADG evades precisely this: doing the usual
differential geometry (calculus) on a classi€at-smooth background manifold (Mallios, 1998a,b;
Mallios and Raptis, 2001, in press).

147That is, again, that the use of the fields of real (probabilities) and complex (probability amplitudes)
numbers in quantum theory is basically due to the a priori assumption of a classical space-time
manifold.
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base arena—may be seen as a “postanticipation” of Riemann’s words in (Riemann,
1854) which we quote verbatim from (Mallios, 2002):

MaR bestimungen erfordern eine Unahpgichkeit der Ga3en vom Ort, die in mehr
als einer Weise stattfinden kann. : Specificatiomagasuremen®f mass require on
independence of quantity from position, which can happen in more than one way.

Moreover, as we shall see subsequently, and in contrast to Isham, we do not aim for
a noncontinuum theoresis of space-time (and gravity) in order to abolish the a priori
use ofR andC in the usual quantum thed? with a concomitant modification of the
latter to suit the noncontinuum base space-time, for there is no (background) “space-
time” (whether “discrete” or “continuous’) as such in the quantum deep and in ADG the
(structural) role played the base (topological) space is a (physically) atrophic, inactive,
dynamically nonparticipatory one.

The last remark also prompts us to highlight from Isham (2002) another remark
of Isham that is quite relevant to our present wafk:

The main conclusion | wish to draw from the discussion above is that a number of a
priori assumptions about the nature of space and time are present in the mathematical
formalism of standard quantum theory, and it may therefore be necessary to seek a
major restructuring of this formalism in situatioriég for example those motivated by
quantum gravity ided$°] where the underlying spatio-temporal concepts (if there are
any at all) are different from the standard ones which are represented mathematically
with the aid of differential geometrip!

A good example would be to consider from scratch how to construct a quantum
theory when space-time is a finite causal set: either a single such—which then forms a
fixed, but non-standard, spatio-temporal background—or else a collection of such sets
in the context of a type of quantum gravity theory. In the case of a fixed background, this
new quantum formalism should be adapted to the precise structure of the background,
and can be expected to involve a substantial departure from the standard formalism: in
particular to the use of real numbers as the values of physical quantities and probabilities.

In the next section we will see exactly how, with the help of ADG, we can
write the vacuum Einstein equations for Lorentzian gravity over a causet and, in
contradistinction to Isham’s remarks above, without having to radically modify
guantum theory—in particular, in its useRfandC—in order to suit that discrete,
noncontinuum background space-time. As a matter of fact, we will see that this

148t least, as long as we abide to the operational idea that our quantal operations, which classically
involve (ideal) clocks and measuring rods (Einstein, 1956; Grunbaum, 1963; Sklar, 1977) which, in
turn, are admittedly modelled aftBr(Isham, 2002), are organized into (hnoncommutative) algebras
(i.e., inline with Heisenberg’s conception of an algebraically implemented “guantum operationality”
(Mallios and Raptis, 2001)) as well as that upon measurement they yield commutative numbers in
the base field (Bohr).

149The excerpt below is taken from section 2.2 in Isham (2002) tBpdce-time dependent quantum
theory.

1500yr addition to tie the text with what Isham was discussing prior to it.

151And, of course, Isham refers to the usual differential geometsiPofmanifolds.
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base causet plays no physically significant role apart from serving as a (fin)sheaf—
theoretic localization scaffolding in our theory; moreover, no quantum theory
proper (either the standard one, or a modified one intuited by Isham above) will be
employed to quantize the classical theory (i.e., Einstein’s equations on the smooth
manifold). All in all, as we will witness in the sequel, in a strong sense our ADG-
based finitary vacuum Einstein gravity may be perceived as being “inherently” or
“already quantum,” “fully covariant'—i.e., as involving only the dynamical fields
and not being dependent in any way on an external, base space-time, be it granular
orasmooth continuum, and certainly as not being the outcome of applying quantum
theory (i.e., “formally quantizing’) the classical theory of gravity on a space-time
manifold (i.e., general relativity).

4.2.3. A brief “Critique” of the Ashtekar—Lewandowski Projective Limit Scheme

In Ashtekar and Lewandowski (1995), a projective syst,@fm of compact
Hausdorff manifolds labelled by graphs—which can be physically interpreted as
“floating lattices”—was employed to endow, at the projective limit of that fam-
ily of manifolds, the moduli spacel,, /G of C*-smooth gauged)-equivalent
Y-M or (self-dual) gravitational connections with a differential geometric struc-
ture including vector fields, differential forms, exterior derivatives, metric volume
forms, Laplace operators and their measures, as well as the rest of the f@ffiiliar
smooth differential geometric entities. As we shall see in the next section, there
has been an ever-growing need in current approaches to nonperturbative canon-
ical (Hamiltonian, loop variables-based) or covariant (Lagrangian, action-based)
quantum gravity, to acquire a firm tangent bundle perspectivégyg (i.e., have
a mathematically well-definetl(A.,/G) object), sincdl (A.,/G) can serve as the
physical phase space of quantum Y-M theories and gravity in its gauge-theoretic
form in terms of Ashtekar’s (self-dual) connection variables (Ashtekar, 1986) and
one would like to do differential geometry on that space. Thus, the basic idea is
that if such a mathematically rigorous differential geometric status is first estab-
lished on the moduli space, one could then hope to tackle deep quantum gravity
problems such as the Hilbert space inner product (and measure) problem, the prob-
lem of time, the nontrivial character of.,/G when regarded as@bundle, the
problem of physical Wilson loop observables ¥tchby the conventional calculus-
based (i.e., the usuéP°-differential geometric) methods of the canonical or the
covariant approaches to quantum field theory.

Although, admittedly, algebraic methods were used in Ashtekar and
Lewandowski (1995) towards endowing the moduli space of connections with
the conventional differential geometric apparatus, the very nature (i.eC°the
smooth character) of each memberf(—zf shows the original intention of Ashtekar

1525ee subsection 5.3 for a more analytical exposition and discussion of some of these problems.
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and Lewandowski: in order to induce the usti&l-differential geometric structure
on Aoo/gat the projective limit, one must secure that each member of the inverse
systemAf comes equipped with such a structure—that is to say, it is a differential
manifold itself. In other words, as it was already mentioned in the beginning of
this section, the essence of Ashtekar and Lewandowski (1995) ikkbaliffer-
ential structure yieldgi.e., induces at the inverse limitke differential structure
Now, in view of the fact that some (if not all') of the aforementioned problems
of T (A /G) come precisely from thé>*-smoothness of the space-time manifold
and, concomitantly, from the group Diff{) of its “structure symmetries® it
appears to us that this endeavor is to some extent “begging the quésti@i.”
course, itis quite understandable with “general relativitg8rsmooth space-time
manifold-conservative” approaches to quantum gravity, such as the canonical or
the covariant (path-integral) on&8,to maintain that the differential geometric
mechanism is intimately tied to (or comes from) the differential manifold, for,
after all,manifolds were created for the tangent buntife

However, this is precisely the point of ADG: the intrinsic, “inherent” mecha-
nism of differential geometry has nothing to do witfy-smoothness, nothing to do
with C*°-smooth manifolds, and the latter (in fact, its structure stiggfprovide
us with just a (the classical, and by no means the “preferred,” one) “mechanism for
differentiating.*” For instance, as we saw in sections 2 and 3, one can develop
a full-fledged differential geometry, entirely by algebraic (i.e., sheaf-theoretic)
means and completely independently(8f-smoothness, on the affine space of
connections as well as on the moduli space of gauge-equivalent connégtions.
the finitary case of interest here, and in striking contradistinction to Ashtekar and
Lewandowski (1995), we have seen above (and in the past (Mallios and Raptis,
2001, in press)) how each principal finsh@éfof gausets in the projective system
5 carries virtually all the differential geometric panoply without being dependent
at all on the classic#@®-manifold. In fact, in the next section we will see how such
aC°-smooth space-time manifold-free scenario will not prevent us at all from writ-
ing a locally finite version of the usual Einstein equations for vacuum Lorentzian
gravity. Quite on the contrary, it will enable us to evade altogether Diff(M) as
well as some of the aforesaid problems that the latter group creates in our search
for a cogent nonperturbative quantum gravity, whether canonical or covariant, on
the moduli space of gravitational connections. Moreover, we will see how we can

1535ee next section.

154The quest(ion) being for (about) a quantum gravitational scheme that is finitistic, but more impor-
tantly, genuinely background@®-smooth space-time manifold-frégee the following section).

1555ee category 1 in the prologue to this paper.

156|n the next section we will return to comment further on this in connection with (140).

157see the concluding section about “the relativity of differentiability.”

158For the full development of differential geometiyta ADG on gauge-theoretic moduli spaces, the
reader is referred to Mallios (manuscript in preparation).
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recover the@oc-gmooth vacuum Einstein equations at the projective limit of an
inverse systeme of fcqv-ones. Already at a kinematical level, at the end of the
next subsection we will argue ADG-theoretically how the “generalized classical”
C*-smooth moduli space of gauge-equivalent (self-dual) sg_in—Lorentzian connec-
tions can be obtained at the inverse limit of an inverse systgnof fcqv-moduli
spaces.

But before we do this, let us recapitulate and dwell a bit longer on some
central kinematical ideas that were mentioned en passant above.

4.3. Remarks on the “Operational” Conception of Finitary Quantum
Causality: A Summary of Key Kinematical Notions for Finitary, Causal,
and Quantal Vacuum Einstein—Lorentzian Gravity

Our main aim in this subsection is to highlight the principal new kinemat-
ical notions, of a strong operational-algebraic flavor, about “finitary causality”
originally introduced in Mallios and Raptis (2001). In this way, we are going
to emphasize even more the characteristic contrast betweeapetational and
quantal—in fact, observer-dependertconception of locally finite causality via
gausets, and Sorkiet al.'s morerealistic causet theory proper. As a main source
for drawing this comparison of our approach against causet theory we are going
to use (Sorkin, 1995). Also, by this review we hope to make clearer to the reader
the intimate connection between central ADG-theoretic notions such as “open
gauge,” “structure sheaf of generalized arithmetics/coordinates or measurements,
etc., and some primitive notions of the finitary approach to space-time (topology)
as initially presented by Sorkin in (Sorkin, 1991).

With Mallios and Raptis (2001) as our main reference and compass to orientate
us in this short review, we provide below a list of primitive assumptions, already
explicitly or implicitly made in (Sorkin, 1991), that figure prominently in all our
ADG-based trilogy (i.e., in the literature (Mallios and Raptis, 2001, in press) and
here) on finitary space-time and Lorentzian qguantum gravity:

1. The basic intuitive and heuristic assumption is the following identification
we made in Mallios and Raptis (2001):

“(coarse) localization’= “(coarse) measurement/observation” (117)

For the moment, assuming with Sorkin that topology is a “predicate”
or property of the (quantum) physical system “space-time,” in the sense
that “the points of the manifold are the carriers of its topoloorkin,
1991),we model our coarse measurements of (the topological relations
between) space-time point events by “regions” or “open sets” about them
Conversely, the open sets of a covering separate or distinguish the points
of X. We thus have, for a bounded regignof a classical®-space-time
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manifold M,*>° and a locally finite open cove; of it,6°
“(coarse) determination of € X” = “open setU € U4 aboutx” (118)

2. Operationally speaking, it is widely recognized tlaalization involves
“microscopic energy,” and measurement a gaugée thus identify again
(nomenclaturewise)

“open setU € U4 about x” = “open gaugeU of x” (119)

and note that this—i.e.gpen gaugé— is precisely the name ADG gives
to the sets of the open coverings of the base topological or localization
spaceX involved in a differential triad (Mallios, 1998a,b).

3. Of course, the better (i.e., more accurate or sharp) the localization, the
higher the microscopic energy of resolution @finto its point events).
Thus, we suppose that the locally finite open coveringXdbrm an
inverse system or net (i.e., a partially ordered set itself) with respect to the
relation “>" of fine graining Roughly, better (more accurate or sharper)
localization ofx involves smaller and more numerous open sets about it,
thus higher microscopic energy of resolution.

4. With these operational assumptions, Sorkin’s two main results in Sorkin
(1991) can be interpreted then as follows:

(i) Sorkin's “algorithm’—i.e., the extraction of &-topological poseP,
from X relative to a locally finite open coveéf —involves separating
and grouping together into equivalence classes (of “observational in-
distinguishability’) the point events of relative to the open gauges
U in 4.8 Point events in the same equivalence class (which is a
vertex) in P are interpreted as being indistinguishable relative to our
coarse measurements or “observations’i, and

(i) S(_orkin’s inverse limit of the projective system of topological posets
P can now be interpreted as the recovering of the locally Euclidean
CO-topology of X at the finest resolution or “ultra localization” o
into its point eventsln this sense, the continuous manifold topology
is, operationally speaking, an ideal or “non-pragmati®aptis and
Zapatrin, 2000%kituation involving infinite (microscopic) energy of
localization or measurement

159 a5 explained in Raptis and Zapatrin (2000), the assumption of a bounded space-timetegiim
on the fact that actual or “realistic” experiments are carried out in laboratories of finite size and are
of finite duration.

160pgain, as explained in Raptis and Zapatrin (2000), the assumption of a locally finite open covering
U, rests on the experimental fact that we always record, coarsely, a finite number of events.

1615ee (Mallios and Raptis, 2001, in press; Raptis, 2000a,b; Sorkin, 1991) for more details about
Sorkin’s algorithm.
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5. Then came Sorkin’s radical reinterpretation of the locally finite partial or-
ders involved from topological to causal (Sorkin, 1995), which essentially
planted the seed for causet theory. We recall from Sorkin (1995) a telling
account of this conceptual sea change:

... Still, the order inhering in the finite topological space seemed to be very
different from the so-called causal order defining past and future. It had only
a topological meaning but not (directly anyway) a causal one. In fact the
big problem with the finite topological space was that it seemed to lack the
information which would allow itto give rise to the continuum in all its aspects,
not just in the topological aspect, but with its metrical (and therefore its
causal) properties as well. The way out of the impasse involved a conceptual
jump in which the formal mathematical structure remained constant, but its
physical interpretation changed from a topological to a causal .offéne
essential realization then was that, although order interpreted as topology
seemed to lack the metric information needed to describe gravity, the very
same order reinterpreted as a causal relationship, did possess information in
a quite straightforward sense In fact it took me several years to give up the
idea of order-as-topology and adopt the causal set alternative as the one | had
been searching for. .

6. Now, the basic idea in Raptis (2000a), but most explicitly in Mallios and
Raptis (2001) under the light of ADG, is that, in spite of Sorkin’s seman-
tic switch above, and in order to retain our picture of finitary posets as
graded discrete differential manifolds (or homological objects/simplicial
complexes}é? we felt we had to give a more operational-algebraic (thus
more easily interpretable quantum mechanically (Raptis, 2000)) definition
of finitary causality than causets. We read from Mallios and Raptis (2001)
what this operational, observatidfrdependent conception of (quantum)
causality involved:

...Allin all, (quantum) causality is operationally defined and interpreted
as a ‘bower relationship between space-time events relative to our coarse
observations (or approximate operations of local determination or “measure-
ment”) of them, namely, if events andy are coarsely determined by (x)

16250 that we could apply the differential geometric ideas of ADG, in a (fin)sheaf-theoretic context
(Raptis, 2000b), at the reticular level of causets (Mallios and Raptis, in press). Indeed, the funda-
mental reason that we insist that the locally finite posets we are usirginapécial complexess
that the construction of the incidence algebras from such posets is manftesttprial (Raptis
and Zapatrin, 2000, 2001; Zapatrin, in press), which in turn secures that the (fin)sheaves over them
exist Had we, like Sorkiret al.insisted orarbitrary (locally finite) posets (see below), the corre-
spondence “finitary posets™ “incidence algebras” would not be functorial, and the (fin)sheaves
that we would be talking about would not actually exist. Furthermore, the bonus from working
with (locally finite) posets that are a fortiori simplicial complexes is that the (incidence algebras of
the) latter, again as shown in the literature (Raptis and Zapatrin, 2000, 2001; Zapatrin, in press),
have a rich (discrete) graded differential structure, which has opened the possibility of applying
ADG-theoretic ideas to the (fin)sheaves thereof.
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and\V(y) with respect td4 , and\ (y) ¢ N(x),183 then we say thatx causes

y.” The attractive feature of such a definition and interpretation of causality
is that, by making it relative t&f; , we render it frame~ or “ gauge* or even
“observation-dependeht. .164

Of course, the open sets i now stand forcoarse causal regioner
rough operations of “observation” or “measurement” of the causal re-
lations between events in the curved sptgee manifold (Mallios and
Raptis, 2001), not just coarse approximations of the topological relations
proper between events. Thus, in view of Sorkin’s semantic switch quoted
above from Sorkin (1995), as well as his assumption in Sorkin (1991) that
the points ofX are the carriers of its topology, we assume a more oper-
ational and at the same time less “realistic” stance than Sorkin (Sorkin,
1995) by maintaining thahe point-events of X are the carriers of causal-
ity in relation to our coarse and perturbing observations (open gauges) U
in U4 (Mallios and Raptis, 2001).

7. Having secured that our structures now enjoy both a causal and an op-
erational interpretation, it became evident to us that our scheme differs
fundamentally from Sorkirt al’s causet scenario at least in the follow-
ing two ways:

(i) Unlike the case in causet theory, which posits up front a “locally fi-
nite poset democracy,” in our theoretical scheme not all locally finite
posets and their incidence Rota algebras may qualify as being “op-
erationally sound gausets.” Only posets coming from coarse causal
gauged/; %> and their incidence algebras are admissible as gausets
proper. As mentioned above, this secures that the locally finite posets
extracted by Sorkin’s algorithm from tldés (which are now causally
interpreted) can be viewed as (causal) simplicial complékesd,

163yhereN(x) is effectively theCech—Alexandrov “nerve-cell” (Cech, 1932; Alexandrov, 1956} of
relative tol4;, namely, the smallest open sgU € U4; : x € U} in the subtopology oK (generated
by countable unions of finite intersections of the open gaubesl/{; ) which includesx (see also
Mallios and Raptis, in press)). By such cells one builds up (abstract) simplicial complexes (nerves)
which, as noted before, are isomorphic to Sorkin’s finitgytopological posets in (Sorkin, 1991)
essentially under two additional conditionsin that it isgeneric(i.e., all nontrivial intersections
of its open sets are different) ananimal((i.e., if any of its open sets is omitted, it ceases being a
covering ofX) (Raptis and Zapatrin, 2001; Porter, 2002). (This footnote is not included in Mallios
and Raptis (2001)).

1645ych a cellular (simplicial), but more importantly to our physical interpretation here, “coarse
observation-dependent” (“perturbing operations-sensitive”), decomposition of space-time, apart
from Regge’s celebrated paper (Regge, 1961), has been worked out by Cole (1972) and very re-
cently by Porter (2002). (This footnote is also not included in (Mallios and Raptis, 2001)).

165again, the right-pointing arrow over the coveribg indicates the causal semantimsarse causal
regionsgiven to the open setd in it above.
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1661t must be noted here that it was Finkelstein, who first insisted, in a reticular and algebraic setting

Mallios and Raptis

in extenso, the incidence algebras (qausets) associated with them can
be viewed as graded discrete differential algebras (manifolds) (Raptis
and Zapatrin, 2000, 2001; Zapatrin, 1996, in press) thus allowing the
entire ADG-theoretic panoply to be applied on (the finsheaves of)
them (Mallios and Raptis, 2001, in press), and

(i) asnoted before, our operational scheme is in glaring contrast to Sorkin

et al’s more “realistic” conception of dynamical (local) causality
(gravity). For example, we recall from Sorkin (1995) that for Sorkin,
in contradistinction to the rather standard operationalist or “instru-
mentalist” interpretation of general relativity according to which the
gravitational potentials, as represented by the 10 components of the
metric tensowg,,,, provide ‘a summary of the behaviour of idealized
clocks and measuring rotiéEinstein, 1956; Grunbaum, 1963; Sklar,
1977; Torretti, 1981), the gravitational field—the dynamical field of
“locality” or “local causality” (Mallios and Raptis, 2001; Raptis and
Zapatrin, 2001)—s an independent substance, whose interaction
with our instruments gives rise to clock-readings,. efithis alone
justifies the realist or “Platonic” (ontological) causet hypothesis ac-
cording to which $Space-time, at small scales, is a locally finite pbset
(Bombelli et al., 1987)—a realm quite detached from and indepen-
dent of (the operationalist or “pragmatist” (Finkelstein, 1996) phi-
losophy according to whichll that there is and matters )s'what

we actually do to produce space-time by our measurerhédbskin,
1995)—whose partial order is the discrete analogue of the relation
that distinguishes past and future events in the (undoubtedly realis-
tic or “Platonic’) macroscopic, geometrical space-time continuum of
general relativity.

8. We now come to the ADG-theoretic assumption of “arithmetizing” or
“coordinatizing” our coarse localizations or measurements. This is rep-

resented by assuming that the base topological spawehich we have
charted by covering it by the open gaugen 4 (or equivalently, iri4),

is K-algebraized in the sense that we localize sheaf-theoretically over it
abelianK = R, C-algebras which comprise the structure shigf The

latter is supposed to be the commutative algebra sheaf of “generalized

arithmetics” in our theory—the realm in which our coarse local measure-
ments, represented by the local sections 6h I'(U, A) = A(U), U € U4,

take values—the readings on our abstract gauges so to speak. That we

choose the stalks ok to be inhabited byabelianalgebras is in accord

not very different from ours called “the causal net,” focausal version of (algebraic) topology
and its associated (co)homology the@Rmnkelstein, 1988).
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with Bohr’s quantum theoretic imperative according to which our mea-
surements always yield commutativenumbers'$” Furthermore, as it
was also emphasized in the previous subsection, since the constant sheaf
K =R, C of the reals or the complexes is canonically injected ktave
realize again thathe usual numerical continug and C enter into our
theory via the process of abstract coordinatization and local measurement,
and not by assuming that the base topological space(time) X is a classical,
locally Euclidean continuum (i.e., a manifoldinally, we must also em-
phasize here, as it was noted throughout the previous sectionis, A6

all our (local) calculations reduce to expressions involving (local sections
of) A—in particular, all our vector sheavesof rank n are (locally) of the
form A"168 and, as a result, their (local) structure symmetries comprise
the matrix grougEnd€&(U))* = My(A(U))°.

9. Finally, anticipating our comments on an abstract, essentially categorical,
version of gauge invariance and covariance of the gravitational dynamics
of gausets in terms of finsheaf morphisms to be given subsequently, we
note here that, although our kinematical, operational-algebraic conception
of finitary quantum causality above is apparently observation or gauge
dependent (Mallios and Raptis, 2001), the dynamics, which is expressed in
terms of the principal (fin)sheaf morphism—the finitary gravitational spin-
Lorentzian connectloﬂD. and its scalar curvaturE(D.) will be seen to
be manifestly4 -independent. Thus, while quantum causality is kinemati-
cally expressed as a power relationship between events relative to our own
coarse observations (gauges) of thertfinits dynamical law of motion
is characteristically independent of the latter (Mallios and Raptis, 2001).
We will comment further on this apparent paradox in subsection 5.1.1.

4.3.1. Projective Limits of fcqv-Moduli Spaces

In closing the present section, we make some final kinematical remarks.
These concern inverse limits of moduli spaobﬁ‘*’(ET) of (self-dual) fcqv-
spln Lorentzian connections (dynamdz‘)*) on the Lorentzian fmsheave‘ﬁ
(5. , bi). These spaces are defined as follows:

N - - - —_—
MOED = ADED/ auti€l (120)

and they are the fcg-analogues of the ADG-theoretic moduli spaces defined in
(92) in general, as well as in (103) and (104) in the particular case of self-dual

167See also footnote 44 and Mallios and Raptis (2001, in press).

168 And ratherfittingly, théocal (coordinate) gauge'e = {U;; (& )o<i<n_1}(U € U4;) of the vector sheaf
£ of rankn in footnote 22, which consists of local sectionséofin £(U) = (A(U))" = A"(U)),
can be equivalently called local frame of€ (Mallios, 1998).
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connectiong®® /\;li(”(gf), as we shall see in the next section, plays the role of the
quantum configuration space for our theory which regards the (self-dual) fcqv-
dynamosDi(*) as (the sole) fundamental (quantum) dynamical variables.

Now, one such moduli space corresponds to (i.e., is based on) each and every
member of the direct systeffi= {%i} 0 of fcg- dlfferentlal triads and, in extenso,
to each member of the inverse syst@n: {(73 D ) of principal Lorentzian
finsheaves of gausets and their reticular (self- dual) spin-Lorentzian connéétions.
Thus, we can similarly define the projective systgam M”)(ET)} of (self-
dual) fcqv-moduli spaces like the one in (120) and, according to the general ADG
theory (Papatriantafillou, 2000, 2001), take its categorical limit, which yields

() = - (gt
ME(EL) = Jim 3q = fm, | ¥(E) a2y
the €*°-smooth moduli space o€ (X)-automorphism equivalegiooth (self-
dual) spin-Lorentzian connectioffi@DY) on the Lorentzian vector bundle/sheaf
&1, associatedtothe principal orthochronous Lorentzian bundle/$h@af = PL
over the regiorX of the €°-smooth K-manifold M. As noted beforeAjl(”(&,To)
corresponds to a generalized version (i.eC°&smooth one) of the classical
moduli spaceA of gauge-equivalent (self-dual)**-smooth spin-Lorentzian
connections on the regioX of the usual differential (i.eG*°-smooth) space-time
K-manifold M.

5. LOCALLY FINITE, CAUSAL, AND QUANTAL VACUUM
EINSTEIN EQUATIONS

This is the neuralgic section of the present paper. Surprisingly, it is also
the simplest one as it is essentially a straightforward transcription of the ADG
constructions and results of sections 2 and 3 to the locally finite case of curved
finsheaves of qauses and their reticular spin-Lorentzian connectidis So,
without further ado, we are going to present a locally finite, causal, and quantal
version of the vacuum Einstein equations (53) for Lorentzian gravity emphasizing
in particular their physical interpretation. We also derive these equations from an
action principle.

16910 (120), AN is the feg- (and self-dual) version of the abstract affine spag€) of A-
connectiongD on a vector sheaf in (54).

170|n fact, as we shall present in subsection 5.5.2, atower of numerous important inverse/direct systems
of structures can be based 3n This just shows the importance of the notion of differential triad
in ADG and its finitary application here.
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5.1. Finitary, Causal, and Quantal Vacuum Einstein—Lorentzian Gravity

First we note that thE\i -connectionf)i on 6? is assumed to the compatible
with the finsheaf morphisrg; in (114), as follows:

DiHom;_ (gi@giw)(ﬁi) =0 (122)

which is the finitary analogue of (17) implying that the connectiyris torsion-

lesst?t D. is a reticular Lorentziametricconnection.
Then, analogously to the abstract expressions (36) and (37) and for the cor-

responding first prolongatioP? of D;(= DP) as in (33) (i.e. Dl Q —Q )
we define the nonzero curvatuRa of the reticular connectlonD. on 5 as the
following EndEiT-vaIued reticular 2-form

R(Di): =Dl oD #0
R € Homg (&1, ©2°) = Homy (1, O))(R) = @' (endéN)(R)  (123)

emphasizing also thatitis - morphism. Thus, we can also define the associated
Ricci tensorRI € <S’nd£T as in (51) and the traced Ricci tensor corresponding to
the retlcularAI -valued Ricci scalar curvatuﬂéI as in (52)t72

So, we are now in a position to write, at least formally, the locally finite, causal,
and quantal version of the vacuum Einstein equations for Lorentzian gravity (53),
as follows”

Ri(§h) =0 (124)

coining the pair §, D;) consisting of a curved finsheaf of gauséisand the
nontrivial fcqv-dynamé’® D; on it effecting that curvature, @initary, (c)ausal,
and (q)uantal (v)acuum Einstein fie{écqv-E-field) and, in extenso, the triplet
(5. , Di» D.) = (&7, D;) anfcqv Einstein-Lorentz fiel(fcqv-E-L- fleld) Inturn, the

latter prompts us to call the corresponding penmd Qi = di , Qi L0 = dil, Qi)
anfcqv-E-L-curvature spagevhich, in turn, makes the base caufet fcqv-E-
space

171Note that in (122), to avoid subscript congestionfbnwe have raised the refinement or finitarity
index ‘i” to a superscript.

1720t course, we assume that, locally in the finsheafsis a 0-cocycle ofh x n-matrices having
for entries local sections (ftiz—that is to say, local 2-forms oR, similarly to (38).

1735ee footnotes 103 and 104. We note here that one can straightforwardly write (124) in terms of
a self-dualfinitary spin-Lorentzian connectioﬁfr and its Ricci curvature scaldﬁi*. We will
return to self-dual connections in subsection 5.3 where we will discuss a possible “fully covariant”
guantization scheme for vacuum Einstein Lorentzian gravity.



1556 Mallios and Raptis

5.1.1. Various Interpretational Matters

Now that we have formulated the vacuum Einstein equations for Lorentzian
gravity oné’iT = (&, pi) we comment briefly on their physical meaning and other
related issues of interpretation.

1. Differentiability is independent af>°-smoothnes¥* First we note, in
keeping with our comments about “reticular differential geometry” in
part 4 of subsection 4.1, that (124) is not a “discrete differential” (e.qg.,
a difference) equation. Rather, it is a genuine., albeit abstract, differential
equation. The discreteness of the base caRsethe fcqv-E-space—does
not prevent us from formulating genuine differential equations over it. As
noted repeatedly earlieP is merely a localization base (topological)
for the gausets (living in the stalks Gﬁ) playing no role at all in the
differential geometric structure of our theory. In other words, our differ-
entials (viz, connections) do not derive from the background space(time).
Space(time) does not dictate to us the character of the differential mech-
anism as we would be (mis)led to belive if we based ourselves on the
classical differential geometry according to which differentiability comes
from theC>-smooth manifoldM or equivalently, from the coordinate al-
gebrag> (M) thereof. That our base space is “discrete” does not mean at
all that the differential geometric mechanism should also be so.

2. A categorical dynamics and an abstract (generalized) principle of general
covariance independent Biff( M). Related to 1, and as it was anticipated
in Mallios and Raptis (2001), the dynamics of local quantum causality, as
depicted in (124), is expressed solely in terms of @imgaf morphisms-
the main finsheaf morphism being tlelinear fcqv- dynamd). In fact,
the fcqv-E- equatlons involve the curvatuieofthe connectloﬂD. ,which
moreover is arAI -sheaf morphism. In other words, and in view of the
physical interpretation that ADG gives to the commutative algebra sheaf
A of generalized coefficientg® the law for the fcqv-E-gravity is inde-
pendent both of our (local) “measurements” or “geometrf@'s encoded
in the structure sheaf of coefﬂmen@s(V)) and of our (local) gauges
(represented by the open sétsn the open covering that we employ
to coarsely localize the events of and “measure” them i (V); V
open inR,). This is reflected ﬂthe (local) gauge invariance of (124) un-
der (local) transformations |mut.é’ (V) ~ m(A (V))*)—the reticular

(local) structure (gauge) group GTT(V) ~ A (V). This invariance, in
turn, is a consequence of the fact that bﬂr.hand its contracuonRI are

174This is the concluding slogan 2 in Mallios and Raptis (in press). We will elaborate further on it in
the last section.
175gee discussion around footnote 44.
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gauge-covariant as they obey a reticular analogue of the homogeneous
gauge transformation law for the gauge field strengths (39). Thus, as it has
been already highlighted in Mallios and Raptis (2001), our scheme sup-
ports the following abstract categorical version of the principle of general
covariance of general relativity®

The fcqv-dynamics, as expressed in (124), is gdyjgedependent. Accord-
ingly, the underlying topological space-timéand its causal discretization
P based on the locally finite open covér play no role in the dynamics of
local quantum causality (Mallios and Raptis, 2001).

It is reasonable to expect this since the fcqv—dynaﬁpo or equiva-
lently its fcqv-potentialA;, can be viewed as the “generator” of the fcqv-
dynamics’” and, as we argued in section 1 above, differentiability is
independent of the background causal-topological srﬁlﬁé Thus, a
fortiori

the fcqv-dynamics, as expressed in (124), is gd4gmdependent. Accord-
ingly, the underlying topological space-timéand its causal discretization
B based on the locally finite open cowdr’® play no role in the dynamics of
local quantum causality as encoded in the fcqv-dynimor in its potential
A (Mallios and Raptis, 2001).

Plainly then, the reticular invariance (gauge) group of (the vacuum dy-
namics of qausets (124) generatedmyon )S —the structure group

Auté‘f—has no relation whatsoever with the invariance group Diff (

of the classical differential space-time manifditl of general relativity.
For instance, Diff M), which implements the principle of general co-
variance in Einstein’s classical theory of gravity, is precisely the group
that preserves the differential (i. €°°—smooth) structure of the underly-
ing space-time manifold. In contradrstmctromut , which locally is

176The epithet “categorical” pertaining precisely to that bBthand R; (f)i) are morphismsK - and
A -morphisms, respectively) in the relevant category of finsheaves of incidence algebras (qausets)
over locally finite posets (causets).

177In the sense that the curvatu_fé(ﬁ. )—the dynamical variable in (106)—may be regarded as the
“measurable geometrrceffect"srnce it |sAmmorph|sm (i.e., itrespects our measurements), while
D., from Whlch’R. derives and which is not aA. morphlsm (i.e., it eludes our measurements),
as its “original, algebraic cause.” That is why we caledthe fcqv-dynamo in the first place: it is
the generator of the fcqv-dynamics (160)—the operator in terms of which the fcqv-E-equations are
formulated. Subsequently, we will see h@ can be regarded as the main quantum configuration
variable and4; , the affine space of all such fcqv-dynamos, the corresponding kinematical space of
quantum configurations (@) in our theory.

178The connectiorD; being in effect a generalized differential operator (derivation) of an essentially
algebraic character (Mallios, 1998a,b; Mallios and Raptis, 2001, in press).

179gee subsection 4.3 above.
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isomorphic toMJ](Ai (U))°,%8 is the group that preserves the local inci-
dence algebraic structure of gausets stalkwise in their finﬁ?eﬂfusit

has nothing to do with the underlying topological base caﬁ’spEr selst

Of course, since, as we argued earlier, differentiability in ADG, and in our
finitary theory in particular, derives from the stalk (i.e., from the incidence
algebras modelling qausets), the (local) gauge gr,an,jpzfiT of incidence
algebra automorphismeke its classical analogu®iff (M), respects the
reticular differential structure, but unlik®iff( M), it (and the reticular
differential structure that it respects) does not come from the background
causal-topological spacé LAllin all,

Dynamics in our ADG-based theory, as expressed in (124), is genuinely back-
ground space-time-freahether the latter is a smooth continuum, or a locally
finite causal space like a causet, or pretty much whatever else

. Everything comes from dynamics: No a priori space-tifie last remarks

in section 2 and the ones above bring to mind Einstein’s philosophical
remark:

“Time and space are modes by which we think, not conditions in which we
live” (Einstein, 1949).

as well as Antonio Machado’s insightful poetic verse:

Traveller there are no paths; paths are made by walking”
(Machado, 1982).

in the sense that our theory (and ADG in general) indicates that space-
time is not something “physically real’'—i.e., it is not an active substance
that participates in the dynamics of Natufée only physically significant
entity in our theory is the dynamical fcqv-E—fie{Eﬁ, D;),*# which does

not depend at all on a supporting space(time) (of any sort, “discrete” or
“continous’) for its dynamical subsistence and propagation. This is in
glaring contrast to the classical theory (general relativity) where space-
time is fixed a priorit® once and forever so to speak, by the thes¥ist

to a background@*°-smooth arena and it does not get involved into the
dynamic$®® (i.e., in the Einstein equations).

180And M _,(Ai (U))*) =~ sl(2,Ci ~ sd(1, 3) (Mallios and Raptis, 2001).
=’ o

181|n other words, Aut SiT acts directly on the (local) objects that live on “space(time)” (i.e., on the
local sectios oéﬁ—the gausets), not on “space(time)” itself.

182|n subsections 5.3 and 5.4 this remark will prove to be of great import since we will argue that our
theory is “fully covariant” and, in a substle sense that we will explain, “innately quantum.”

183That is to saythere are pathis

184That is to say, “time and space are modes by which we thirik—our own theoretical constructs
or figments.

185That is to say, space-time is not an active, dynamical, “living” so to speak, condition.
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However, Machado’s insight seems to go a bit further, for it intuits not
only that space(time) is (physically) nonexistent (because itis dynamically
nonparticipatory), but also that it is actually the “result” of dynanifés.
How can we understand this in the context of ADG and what we have
said so far? To give a preliminary answer to this question, we may have
to address it first from a kinematical and then from a deeper dynamical
perspective.

(i) Spacetime from “algebraic kinematit§.he kinematical emergence
of “space” fromincidence algebras modelling discrete quantum topo-
logical spaces and of “space-time” from the same structures, but
when the locally finite partial orders from which they come from
are interpreteéh la Sorkin (Sorkin, 1995) as causal sets rather than
as finitary topological spaces, has been worked out in the literature
(Raptis and Zapatrin, 2000, 2001). Especially in the second reference,
the kinematics of a reticular, dynamically variable quantum space-
time topology—a Wheelerian foam-like structure so to speak—was
worked out entirely algebraically on the basis of a variant of Gel'fand
duality*®” coinedGel'fand spatialization The latter pertains to an
extraction ofpointsand the concomitant assignment of a suitable
topologyon them, by exploiting the structure and representation the-
ory of (finite dimensional) nonabelian associative algebras like our
incidence Rota algebreﬁ. modelling gausets. Such a procedure,
quite standard in algebraic geometry (Shafarevich, 1994), is essen-
tially based on first identifying points witkernels of irreducible
representations of th&; s which, in turn, ar@rimitive idealsin €2;s,
and then endowing the collection of these ideals—the so-catles
itive spectra of the incidence algebras S{@g—with a nontrivial
topology*®® Subsequently in Mallios and Raptis (2001), we heuris-
tically argued that the very definition of the principal fmsheaﬁés
of qausets over Sorkiet al's causets, which are interpreted as the
kinematical structures of a locally finite, causal, and quantal theoresis
of Lorentzian space-time and vacuum Einstein gravity, is essentially
schematié® The general lesson we have learned from this work is
that

186That is,paths are made by walking

187The reader will have to wait until the following subsection for more comments on Gel'fand duality.

188For the incidence algebras in focus such a topology iftita topologyRaptis, 2000a; Raptis and
Zapatrin, 2000; Raptis and Zapatrin, 2001).

189 (noncommutative) algebraic geometry, schemes—a particular kind of “ringed spaces™—are
sheaves of (noncommutative) rings or algebras over their prime spectra usually endowed with
the standard Zariski topology (Shafarevich, 1994). Incidentally, in ADG, the paiA), which
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“space(time)” and its geome#$ is secondary, derivative from
a deeper, purely algebraic theoresis of Physis, inherent already
in the initial, so to say thus fafgeometrical” aspect?!

(i) Spacetime from “algebraic dynamitg.he idea that space-time and
gravity come from an algebraically modelled (quantum) dynamics is
a deeper one than (i). Presumably, in Machado’s verse quoted above,

it is exactly the particles, fields and their mutual interrelations
(i.e., interactions) that “do the walking,” and by their dynamics
they “define” (i.e., delimit) “space-time®2

It must be noted that, still at the kinematical level of description, Eu-
clidean geometry is an abstraction from the motions of, as well as the
congruence and incidence relations between, rigid bodies. However,
Einstein was the first to realize that geometry should not be regarded
as an entity fixed ab initio by the theoretician, but it must be made
part of the general physical process thus be subjected to dynami-
cal changes (Einstein, 1983b), hence he arrived at general relativity
the dynamical theory of the space-time megjge (Einstein, 1956).

On the other hand, very early on Einstein also realized that even
though general relativity relativized the space-time metric and suc-
cessfully described it as a dynamical variable, the smooth geometric
space-time continuum was still lying at the background as an in-
ert, non-dynamical, ether-like substance a priori fixed by the theorist

has been coinedK-algebraized space,” may be thought of as such (commutatively) ringed space
(Mallios, 1998a). The schematic aspects of our theory and their affinity to similar noncommutative,
quantal topological spaces known@santalesas well as to sheaves over such quantales (and the
topoi thereof), have been explored in Raptis (2001a) and recently reviewed in the literature (Raptis,
2001b, 2002).

190We use the term “geometry” in a general sense which includes for instance “topology” and other
qualities of “space.”

191\We tacitly abide to the broad “definition” of geometry te analysis of algebraic structurét
must also be noted here that Finkelstein has long maintained in a spirit akin to ouspabat
time, causality, gauge fields and gravityeemergent notions from a more basic, purely algebraic
(and finitistic!) theory (Finkelstein, 1969, 1988, 1996; Selesnick, 1991, 1994, 1995, h@d8p,
innately “quantal

192From this perspective, the standard procedure of first laying down the kinematics of a theory (e.g.,
the space of kinematical histories or paths of the system) and then the dynamics, appears to be upside
down. Dynamics (“cause”) comes first, the kinematical space (“effect”) second. This already points
to a significant departure of our scheme from Somral’s causet theory whose development
followed Taketani and Sakata's methodological paradigm for the construction of a physical theory
according to whictone must first develop (and understand!) the kinematics of a physical theory
and then proceed to formulate the dynan{@erkin, 1995). Perhaps this is the way we have so far
practiced and understood physics—i.e., by first delimiting what can possibly happen (kinematics)
and then describing what actually happens (dynamics)—but Physis herself may not work that way
after all (Mallios, 2002).
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(Einstein, 1983a, 1991, consequently, and intrigued by the dramatic
paradigm-shift in physical theory that quantum mechanics brought
about, he intuited soon after the formulation of general relativity that

.. The problem seems to me how one can formulate statements
about a discontinuum without calling upon a continuum space-
time as an aid; the latter should be banned from theory as a
supplementary construction not justified by the essence of the
problem—a construction which corresponds to nothing real. But
we still lack the mathematical structure unfortunately(1916)-%

and a year before his death, that

..An algebraic theory of physics is affected with just the in-
verted advantages and weaknesses [than a continuum tHéory]

.. It would be especially difficult to derive something like a
spatio-temporal quasi-order from such a schema...But | hold it
entirely possible that the development will lead therdthat is,]
against a continuum with its infinitely many degrees of freedom.
(1954)195

Also, again motivated by the quantum paradigm, he intuited that

.. Perhaps the success of the Heisenberg method points to a
purely algebraic method of description of nature, that is to the
elimination of continuous functions from physics.” (1936)
(Einstein, 1936)

and, in the concluding remarks in the last appendix of The Meaning
of Relativity, that

..[Quantum phenomena Hoot seem to be in accordance with
a continuum theory, and must lead to an attempt to find a purely
algebraic theory for the description of reality. (1956) (Einstein,
1956)

Inourtheory, which rests on the intrinsically algebraic sheaf-theoretic
axiomatics of ADG (Mallios, 1998a,b), space-time as such, especially
in its classicalC>-smooth guise, plays no operative role in the for-
mulation of the fcqv-E-dynamics (124). All that is of mathematical
import and physical significance in our scheme is the fcqv-E-field
(Q. , D. ) the connection part of which—the fcqv- dynarﬂp—belng

of purely categorico algebralc character. All that is physically mean-
ingfulin our model is Q. = 6‘- DI) and the dynamics (124) which it

193This quotation of Einstein can be found in Stachel (1991).

194|n square brackets and nonemphasized are our own completions of the text to enhance continuity
and facilitate understanding.

195This quotation of Einstein can be found in Stachel (1991).
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obeys. Furthermore, the quanta of the fcqv-E-field, which have been
called causonsin (Mallios and Raptis, 2001, in press ), represent
the dynamical “elementary particles” of the (gauge) fcqv-potential
field A; of guantum causalit}® and by their algebraico-categorical
dynamics theylefinethe quantum gravitational vacuum without be-
ing dependent in any sense on an ambient space-time—a background
stage that just passively supports their dynarificAt the same time,

one may think of,ﬂ]t. &'—the structure group oﬂ. where the
reticular connection 1-form4i takes values—as the algebraic self-
transmutations of the causon defining some soguzintum causal
foam(Raptis and Zapatrin, 2001¥ Thus, we seem to find ourselves

in accord with the quotation of Feynman in the previous section, since

we actually avoid defining up-front the physical meaning of quan-
tum geometry, fluctuating topology, space-time foam, etc., and
instead we give geometrical meaning after quantization (alge-
braization)!® In broad terms, algebra precedes geometry, since
the (algebraic dynamics of the) quantum precedes (geometrical)
“space.”

In a similar vain, we note that, in the context of ADG, the fundamen-
tal difference noted at the end of subsection 2.3 between the notion of
connectiorD—a purely algebraic notion since, for instangetyans-
forms affinely (inhomogeneously) under the gauge gf8upnd its
curvatureR(D)—a purely geometric notion since it transforms tenso-
rially under the automorphism group of the vector sh&ahecomes

very relevant here. For example, in connection with (124), we note
thatD; may be viewed as the generalized algebraic differential op-
erator in terms of which one sets up the fcqv-E-equations, while

196The reader should wait until our remarks on geometric (pre)quantization in subsection 5.4 where
we make more explicit this “fields— particles (quanta)” correspondence.

197We argued earlier that the role the base topological causet—the fcqv-E-épa{;days in our
theory is merely an auxiliary ond is a substrate or “scaffolding” that avails itself only for the
sheaf-theoretic localizations of the dynamically variable gausets; nothing else.

198|n a Kleinian sense, the geometry of the causon—the quantum of the algebraic fcqv- dfmamo
representmg dynamical changes of (local) quantum causality in (the stalks of, i.e., the sections of)
8 = Q.—ls encoded in the (structure) grou{but. Q. of its incidence algebraic automorphisms.

199Thls remark hints atur maintaining that our theory j$o a great extenglready or innately quantum
(so that the usual formal procedure of quantization of a classical theory, like general relativity, in
orderto arrive ata quantum theory of gravity—regarded as “quantum general relativity—is “begging
the question” when viewed from the ADG-based perspective of our theory). After subsections 5.3
and 5.4, this claim of ours will become more transparent.

2001’hat is to say, it does not respect our local measurements of (i.e., the geometry of) the causon in
Ai (V). .

201That is to say, it respects our local measurements of the caugqiiun).
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its curvatureR; (23i) as the geometry (i.e., the solution “space”) of
those equations. Loosely speakifiystands to RD) as the “cause”
(algebra/dynamics) stands to the “effect” (geometry/kinemates).

Indeed, in (Mallios and Raptis, 2002), and based on the abstract
version of the Chern—Weil theorem and the associated Chern iso-
morphisma la ADG, we similarly argued that the purely algebraic
notion of connectiorD lies on the quantal side of the quantum divide
(Heisenberg Scnhitt), while its geometric, “observable” (i.e., mea-
surable) consequence—the curvat(®)—on the classical sid&®
Moreover, in Mallios and Raptis (in press), on the basis of general
geometric pre-quantization arguments (Mallios, 1998a,b, 1999), we
saw how the algebraic causon—the quantum of the connebtien
eludes our measurements, so that what we always measure is its field
strengthR(D;), never the connection itself. In a Bohrian sense, the
classical, geometrical (becauseespecting) field strength is the re-
sult of our measuring the quantum (becaéseluding), algebraic
connection.

In closing (ii), we would like to mention, also in connection with (i)
above, that even string theory, which purports to derive the classical
space-time manifold and Einstein’s equations from a deeper quantum
string dynamics, has recently focused on defining (space-time) points
and on deriving atopology for them by entirely algebraico-categorical
means not very different, at least in spirit, from ours (Aspinwall,
2002).

(iii) No topology and no metric on “space”: An apparent paradox from
categorical dynamicsWe mention briefly the following apparently
paradoxical feature of our theory which has already been mentioned
and resolved in Mallios and Raptis (2001). While we started by cover-
ing the space-time regioX by the “coarse” open gaugesin ¢4 thus
we associated with the latter the base causal-topological $pace
interpreted them as coarse observations or “rough chartings” of the
causal relations between eventsdirn(Mallios and Raptis, 2001), at
the end, that is to say, at the dynamical level, the dynamics of qausets
over B is gaugelf -independent since it is expressed categorically
in terms of the finsheaf morphisri%.2°* Thus, in the end the back-
ground space(time) seems to “disappear” from the physical processes
in the quantum deep as it plays no role in the gauge invariant dynam-
ics of qausets. That this is only apparently and not really paradoxical

202gee footnote 177.
203Revisit footnote 44. B
204gquivalently, the curvature finsheaf morphigtn(D;) in (124) is gaugeé/; -covariant.
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has been explained in detail at the end of Mallios and Raptis (2001).
Here, and in connection with footnote 104, we bring to the attention
of the reader that the finitarity index (the degree of localization of
our qausets)i” in (124) should not be mistaken as indicating that
D; or its curvatureR; are intimately dependent on the gadgefor,

as we repeatedly argued befotlegy are no£® The index merely
indicates that our structures are discrete and that (124) is the finitary
analogue of the ADG-theoretic expression (88)The correspond-

ing statement thathe localization index is physically insignificant

is precisely what it was meant in (Mallios and Raptis, 2001; Raptis
and Zapatrin, 2000, 2001) when we said tthatincidence algebras
whether they are taken to model discrete quantum topological spaces
proper (Raptis and Zapatrin, 2000, 2001) or their causal analogues—
gausets (Mallios and Raptis, 2001; Raptis, 20088 alocal struc-
tures(i.e., they are not vitally dependent on any preexistent or a priori
postulated and physically significant space(time)).

Now that we have shown both that the causal topology of the
base cause®, plays no role in the dynamics of qausets (124) and
that differentiability comes from the incidence algebras in the stalks
of the curved(?;s, we are also in a position to return to footnote
20, the comparison betwedn and R(D) in 2.4, as well as to our
comments on the metrjg in “about the stalk” in subsection 4.1, and
note that in our algebraic connection-based (i.e., gauge-theoretic)
scenario

fcqv-E-L-gravity does not describe the dynamics of a vacuum
space-time metric as such in the way the original theory (i.e.,
general relativity) does. Like the generalized differenﬁ’aj the

Ai metric g; is a finsheaf morphism, thus it is about the local
(stalk-wise) algebraic structure of the gauged gausets, not about
the underlying causal—topologidal per se. Hence, on the face of
(124), we agree with Feynman’s hunch in subsection 3.1 that “the
factthat a massless spin-2 field can be interpreted as a metric was
simply a coincidence that might be understood as representing
some kind of gauge invariance.”

Of course, itis again plain that the finitarity index on the reticular met-

ric pi is of no physical (dynamical) significance since it, like the geo-
metrical notion of curvature, is aiy -respecting finsheaf morphism.

205Quite on the contrary, as we said, since they are finsheaf morphisms, they show that they are
Ui -independent entities.

206 a5 it were, the finitarity index shows that our theory is a concrete application of ADG to the locally
finite regime of qausets; it is of no other physical significance.
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Thus,p;, like R, lies on the classical (geometrical) side of the quan-
tum divide27

5.2. Derivation of fcqv-E-L Gravity From an Action Principle

We wish to emulate the situation in the abstract theory and derive (124) from
the variation of a reticular, causal, and quantal versish of the E-H action
functional ¢5). In the same way that the latter is a functional on the affine space
A(H (€M) of (self-dual) Lorentzial-connection® on& ' taking valuesin the space

A(X) of global sections oA (65), (1:)6; is a functional on the spacé(”(éﬁ)zos of
the (self-dual) fcqv-E-L-dynam(ﬁi(*) on €; taking values irA; (I3.), as follows:

UG (COFre A (B
e AT() — Ai(R) (125)
reading “point-wise” inA™(€;)
. o > — S o > S
ANE) 3 DY = g i(D) = RIODM) =trRIIDT)  (126)

where, plainlyﬁi(” is a global section of the structure finsh&a,fof reticular

coefficients over the base cauﬁe(ie 7%”) €A (|3)) 209

At this point we recall the basic argument from subsection 3.3: to be able
to derive (124) from the variation (extremization) gﬁjl with respect toD.

—_—

A (Q.) all we have to secure is that the derlvatn@rj (D.y(t))|t —o, for a path
y (t) in the reticular spin-Lorentzian connection spat;eé’ Wy R — A (Q.))
is well defined. The latter means in turn that there should be a well-defined notion
of convergence, limit and, of course, a suitable topology on the structureAheaf
relative to which these two notions make sense.

We recallfrom (Mallios and Raptis, 2001; Raptis, 2000a,b; Raptis and Zapatrin,
2000, 2001) that the abelian (structure) subalge}a;am‘ the incidence algebras
Qi modelling the gqausets in the stalks of fes can then be construed as carrying
a (natural) topology—the so-call&bta topology—provided by the; s’ structure
(primitive ideal) space (Gel'fand duality}?® With respect to the (now quantum

207 s it should, since it isis—the observers—that carry on local acts of measurement on “it” (i.e., the
guantum system “space-time’) and obtainumbers in the process all of which are effectively en-
coded inp. Indeed, geometry (and measurement) without a metric sounds as absurd as convergence
(and continuity) without a topology.

208e write A{ for ACP. We met earlierd(™ in connection with the definition of the reticular

1
moduli spacesV({ (&) in (120).
2091 what follows, we will forget for a while the epithet “self-dual” (and the corresponding notation)
for the gravitational connection and its curvature. We will return to self—@flaala bit later.
210|n the next subsection we will comment further on the rich import that Gel'fand duality has in our
theory.
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causally interpreted) Rota topology, it has been shown that there is a well-defined
notion of (discrete) convergence and, in extenso, of limits (Bresiat., 1999;
Raptis, 2000; Raptis and Zapatrin, 2000, 2001; Sorkin, 1991; Zapatrin, 1998).

—
Thus, &9 i (Diy (1))lt=0 is well defined.

5.3. Towards a Possible Covariant Quantum Dynamics for the Finitary
Spin—Lorentzian Connections

We have seen how general relativity can be cast as a Y-M-type of gauge theory
in finitary terms, that is to say, how it may be expressed solely as the dynamics of a
fcqv-spin-Lorentzian connection variable—the dynari¥ These dynamos have
been alreadiinematically quantize@Mallios and Raptis, 2001) arggeometrically
(pre)-quantizedo causongMallios and Raptis, in presd} along the lines of ADG
(Mallios, 1998a,b, 1999).

In the present subsection we discuss the possibility of developing a covariant
path integral-type ofjuantum dynamicr the finitary spin-Lorentzian dynamos
(Di on the respective; = €);s. As a first step, we wish to emulate formally
the usual practice in the quantum gauge theories of matter (i.e., QED, QCD, and
higher dimensional Y-M theories of a semisimple and compact Lie structure group
G) whereby a covariant quantum dynamics is represented by a path integral over
the space of the relevant connections on the corresponding principal fiber bun-
dles over &€*°-smooth space-time manifoll (aG = U (1)-bundle for QED, a
G = SU(3)-bundle for QCD and/ = SU(N)-bundles for general Y-M theories).
Thus, in our case too, we intuit that the main object of study should be the following
“heuristic device”:

Z = f ¢ €91 d 4, (127)
Ai(EN

where A4 (6?) is the affine space of finitary spin-Lorentzian connecti®hson

the curved orthochronous Lorentzian finsheaﬁé& ﬁi of gausets which is
thus being regarded as the (quantum) kinematical configuration space (of “fcqv-
dynamo or causon quantum histories’) of our theory. More precisely, because of
the local reticular gauge invariance of our theory, the actual physical configuration
space is the fcqv-analogue; (Ef) = A (SiT)/Auti (Ef) of the moduli space in
(103) that we defined earlier in (120), and it consists of finitary gauge-equivalent

211with a concomitant sheaf-cohomological classification of the corresponding associated curved
line sheave< inhabited by these causons. We will return to make more comments on geometric
(pre)quantization in subsection 5.4.2.
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fcqv-connection@i . We thus recast (127) as follows:
Z - / D AA] g0 (128)

where [/ii]ATJti(ET) denotes the gaugg@)tiéﬂequivalence classes of fcqv-

gravitational connection®; on &' —the elements a1, (éjﬁ).

_Inwhat follows we enumerate our anticipations and various remarks about
Zi in (128) by gathering information from both the canonical (i.e., Hamilto-
nian) approach to quantum general relativity and the covariant path integral (i.e.,
Lagrangian or action-based) approach to Lorentzian quantum gravity. In particu-
lar, and in connection with the former approach, we discuss issues arising from
Ashtekar’s self-dual connection variables scenario for both classical and quantum
gravity (Ashtekar, 1986) as well as from théfi°-smooth loop holonomies—the
so-called loop formulation of (canonical) quantum gravity (Rovelli and Smolin,
1990¥*>—especially viewed under the functional analyti€*{algebraic) prism
of (Ashtekar and Isham, 1992; Ashtekar and Lewandowski, 1994). We thus com-
mence our exposition with a brief review of both the Hamiltonian (canonical) and
the Lagrangian (covariant) approaches to Lorentzian quantum gravity.

5.3.1. The Canonical (Hamiltonian) Approach: Ashtekar Variables

More than 15 years ago, Ashtekar (Ashtekar, 1986) proposed a new set of
variables for both classical and quantum general relativity essentially based on a
complex space-time manifold and a self-dual connection version of the Palatini
comoving 4-frame\(ierbein) formulation of gravity. The main assumptions were
the following:

e A4-dimensional, complex, orientabl&r-smooth space-time manifold
of Lorentzian signature.

e The basic gravitational variabld* 2** which is aso(1, 3)c-valued self-
dual connection 1-form.

e The vierbein variable, which defines a vector space isomorphism between
the tangent space &f and a fixed “internal spacet equipped with the
usual Minkowski metria and the completely antisymmetric tengord
is self-dual with respect te.?14

212For reviews of the loop approach to quantum gravity and relevant references, the reader is referred
to (Loll, 1994; Rovelli, 1997).

213The index 0" just indicates thatd is aC®-smooth connection on M

214More analytically and in bundle-theoretic terms (Note: most of the items to be mentioned in this
footnote should be compared one-by-one with the corresponding ADG-theoretic ones defined earlier
and the reader must convince herself that, ADG-theoretically, we possess all the classical smooth
vector bundle-theoretic notions and constructiorithout any notion ofC*-smoothness being
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In the new variablesA?, ande, the gravitational action functional assumes
the following so-calledirst-order form

1
Sl AL, €] = 5/ eenenRY) (129)
M
which may be readily compared with the usual Palatini action
1
Sal A, €] = 5/ elenen Ry) (130)
M

and directly see tha®sh is Sar's self-dual versiord’®> We also note that, upon
variation of bothS,shand S, with €, one obtains the vacuum Einstein equations
(i.e., thatA} is Ricci-flat),

while upon variation with4$), one obtains the metric-compatibility condi-
tion forAf;S) (i.e. that it is the gauge potential part of the Levi—Civita connection
of the metric).

The attractive feature of Ashtekar's new variables is that in terms of them
one can simplify and write neatly the Hamiltonian constraints for gravity, thus one
obtains a clear picture of how to proceed and canonically quantize the thésmry °
Dirac. To revisit briefly the Hamiltonian approach, one assumedMifattors into
two submanifoldsM = 23 x R,?16 thus securing the-81 decomposition needed
to approach quantum gravity canonically. Then, one assumes as configuration
space of the theory the affine sp&cé’, of complex, smooth, self-duas,o(3)c-
valued connections A%, on 23,217 and asphase spacehe cotangent bundle
T*(3AZ%) coordinatized by canonically conjugate paitsif,, E,.)?'8 obeying

used This observation will prove crucial in the sequel—see comparison between our ADG-based
finitary scheme and the usu@l®-approaches to nonperturbative canonical or covariant Lorentzian
guantum gravity that the present footnote will trigger after (140)), oneZetsequipped with a
pseudo-Riemannian metnjcand fixed orientatiod®—be an “internal Minkowskian bundle space”
isomorphic to the tangent bundleM. © andy define a nowhere vanishing global sectioof
A*T*. The aforesaid fiber bundle isomorphism is symbolizeé a§ M — 7, and its inverse
e Lis the comoving 4-frame field/{erbein) mentioned above (by pushing forwazdne can also
define a volume fornp on M, while TM inherits viae~! the metricy from 7).  similarly defines
an isomorphism betweeh and its dual7 *. Fortunately, in four dimensiong, ande determine
a unipotent Hodge-operator: : A27 —s> A27T. One then regards as basic dynamical fields in
Ashtekar’s theory the aforementioned spin-Lorentzian metric {kpreserving) connection 1-form
AZL (whose curvaturdRY is a section 0o\27 @ A?7* and satisfies relative tethe self-duality
relation:xRY, = R™ — oo) and the frame field e (which is &-valued 1-form:e € Q(7)). (Of
course, one can also transfer efa the connectiond}, from 7" to TM.)
215p|ainly, RS in both (129) and (130) is the curvature of the (self-dual) connectigi.
216 Assuming also that the “spatial” or “spacelike” 3-submani@3 is orientable and compact.
217Thus, in this picture gravity may be thought of as%®(3)c-gauge theory—the dynamical theory
of 3A;ro in the connection spacfeél;ro. Shortly we will see that gravity is actually a “larger” theory
transformation-wiseit is an S ((3)c-gauge theory together with Diff(M)-constraints coming from
assuming up front that there is an external backgroGfttssmooth space-time manifold
218\Where3E,, is a smooth vector density representing a generalized electric fiquson
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the following Poisson bracket relatichs
PALPEL =83x—y);  (x,yexd (131)

In terms of these variables, the Hamiltonian for gravity can be shown ¥ be
1
H(A, E)=/3 (E/\|6RE2+MSRE> dx (132)
)y

with 4, andig being Lagrange multipliers corresponding to the well-known lapse
and shift functions in the canonical formulation of gravity.

On the other hand, since the theory has internal (gaB@%3B)c-symmetries
and external (space-time) Diff(M)-symmetries, not all points (classical states) in
the phase spact*(3.A%) can be regarded as being physical. This is tantamount
to the existence of the following five first-class constraints for grédity

one Gauss divergence constraint (interndDE = 0
three spatial diffeos constraints (externaR E = 0 (133)
one temporal diffeo constraint (externa RE? = 0

which must be satisfied by the (classical) physical st&test the same timeDE,

RE, ande R E? can be seen to generate local gauge transformations in the internal
gauge space, as well 35-spatial diffeos an@®-temporal diffeos respectively in

the externalM = x° x R-space-time manifolé? thus they transform between
physically indistinguishable (equivalent) configurations. It is important to note
here that pure Y-M theory also has the internal Gauss gauge constraint, but not the
other four external “space-time diffeomorphism” DNf(-constraints. Because of
this fact, Loll points out for example thaplire gravity may be interpreted as

a Yang—Mills theory with gauge group = SQ(3)C, subject to four additional
constraints in each point a£2?4 (Loll, 1994). We will return to this remark soon.
One should also notice here that since the integrand @4, E) in (131) is an
expression involving precisely these four external space-timeMjfi¢onstraints,

the Hamiltonian vanishes on physical st&®sSince, as noted in footnote 224,

is the generator of the smooth time evolutior®bfin the space-time manifold M,

2191n (131), we present indexless symplectic relations. The reader is referred to (Loll, 1994) for the
more elaborate indexed relations.

220 pgain, all indices, including the ones fot andE above, are omitted in (132).

221 pgain, all indices are suppressed for symbolic economy and clarity.

222|n (133) the temporal-diffeomorphisms constraint is commonly known asHhmiltonian
constraint

223The Hamiltonian constraint generates the smooth time evolutiG?éf M.

224which we callx? here.

225This is characteristic of gravity regarded as a gauge theory®f¥ @mooth space-time manifold
M, namely, Diff(M), which implements the principle of general covariance, is (part of) gravity’s
gauge (structure) groud.
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one says (even at the classical level) that, at least from the canonical viewpoint,
gravity is “inherently” a no-time (‘time less’) theory.

A straightforward canonical quantization of gravayla Dirac would then
proceed by the following standard formal replacement of the Poisson bracket
relations in (131) by commutators

(A E)=8(x-y) — [4El=is*x—-y); (x,yeZ®  (134)

with the hatted symbols standing now for field operators acting on the unphysical
phase spac® *(3A/,)226 which is suitably “Hilbertized.” The latter pertains es-
sentially to the promotion of the spad>AY) = (¥ (A)} of C-valued functions
on3A% to a Hilbert spacét of physical states. This is usually done in two steps:

e First, to take into account the gauge and diffeomerphism invariance of
the theory, one projects out of(>A%) all the wave functions lying in
the kernel of the corresponding operator expressions of the gravitational
constraints in (133). These are precisely the physical quantum states-to-be,
as they satisfy operator versions of the constraints (i.e., they are annihilated
by them). They comprise the following subspagg of (p)hysical wave
functions inF

Fpi= (U(A): DEW(A) = REW(A) = cREW(A) =0}  (135)

where the hatted symbols denote operators.
e Then, one promote&, to a Hilbert spacét, by endowing it with the
following hermitian inner product structure

(W2(A)W1(A)) = ﬁ g W3 (A)W1(A)dAlg (136)

thus essentially by insisting that the wave functioh§4) are square-
integrable with respect tp|.). Howeverso far one has not been able to find
afully G-invariant (i.e., S@3)c-gauge and Diff(M)-invariant) integration
measurg[dA]g on3AZ% /G227 This is essentially the content of the so-
calledinner product problenn the canonical approach to quantum general
relativity.

226 A5 can be read from Loll (1994) for instance, there are (technical) reasons fofltigig, ) instead
of the physical cotangent bundie'(3.A4% /G) on the three-connection moduli spatd;, /G. We
will comment on some of them subsequently when we emphasize the need to develop a differential
geometry on the moduli space of gauge-equivalent connections.

2270f course, the tough problem is finding a DNfj-invariant measure, not &Q(3)c one. Ingenious
ideas, involving abstract or generalized integration theory, have been used to actually construct
such a Diff(M)-invariant measure (Baez, 1994a,b). We will return shortly to comment a bit more on
abstractintegration theory and generalized measures. Also, motivated by this remark abbUt Diff(
invariant measures, from now on we will abuse notation and identify the gauge (structurefjgroup
of gravity only with its external smooth space-time manifold symmetries §.e=, Diff( M)) and
forget about its internal, “purely gauges’O(3)c-invariances.
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Before we move on to discuss briefly the covariant path integral approach to
guantum gravity, which, as we shall see, also encounters a similar “diffeomorphism-
invariant measure over the moduli space of connections” problem, we wish to
present some elements from the Ashtekar—Isham analysis of the loop approach to
canonical quantum gravity (Ashtekar and Isham, 1992; Ashtekar and Lewandowski,
1994; Rovelli and Smolin, 1990). Of particular interest to us, without going into
any technical detail, are two general features of this analysis: (i) the application
of a version of Gel'fand duality on the space of Y-M and (self-dual) gravitational
connections in a spirit not so different from how we use Gel'fand duality in our
algebraico—sheaf-theoretic approach to causal sets here, and, as a result of this
application and (ii) its pointing to a generalized integration theory over the mod-
uli space® A% /G in order to deal with the “Diff/l)-invariant measure problem”
mentioned in connection with the Hilbert space inner product in (136).

In Rovelliand Smolin (1990), used non-local, gauge-invariant Wilson loops—
the traces of holonomies of connections around closed loops #—and found
physical states for canonical quantum gravity, that is to say, ones that are annihi-
lated by the aforementioned operator constraints. Remarkably enough, they found
that such states can be expressed in terms of knot and link-invariants (which them-
selves areC-valued functions on knots and links that are invariant under spatial
diffeos), thus they opened new paths for exploring the apparently intimate rela-
tions that exist between gauge theories, (quantum) gravity, knot theory and, in
extenso, the geometry of low-dimensional manifddsSuch promising new re-
search possibilities aside, what we would like to highlight here are certain features
in the aforesaid work of Ashtekar and Isham which put Rovelli and Smolin’s loop
variables on a firm and rigorous mathematical footing, and, in particular, opened
the way towards finding-invariant measures (as well as generalized integrals to
go with them) that could help us resolve problems like the one of the inner product
mentioned above.

Our first remark concerns the general moduli spdgg/G of gauge theories
and gravity. We have seen above what a crucial role it plays in both the classical and
the quantum descriptions of these theories. For one thing, itis the classical configu-
ration space of the theories in their connection-based formulation. As we have said,
to get the classical phase space, one deals with the cotangent Bri(dlg/G).2°

?280ne defines a Wilson loop as followst () := tr eXPpo(fyeys A)), wheret is a spatial loop

(in 23), p is a (finite dimensional, complex) matrix representation of the Lie alggbféhe gauge
groupg where the (self-dual) connectioft) takes values (in our casey(3)c, and the indexfio’
to exp denotesgath ordered (Loll, 1994). For the sake of completeness, we note that Rovelli and
Smolin, based on Ashtekar’s new variables (A, e), actually defined an “adjoint” set of Wilson loop
variables that read¥V{ (¢) = tr[e(¢) exppo(sza AN

229Refer to Baez and Muniain (1994) for a thorough exposition of the close interplay and the fertile
exchange of ideas between knot theory, gauge theory and (quantum) gravity.

230The elements of *(A./G) are the classical physical observables of the theories.
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In their quantum versions, the moduli spadg /G is supposed to give way to the
Hilbert space.?(A./G, du) of C-valued, square-integrable functions.dn,/G
with respect to some measutlgl, which is in turn expected to b&-invariant.
However, because of,/G’s infinite dimensionality, non-linear nature and rather
“complicated” topology:* there are significant (technical) obstacles in finding
(i.e., actually constructing) suchda.. Moreover, in the canonical approach, the
loop variables of Rovelliand Smolin provide us with a set of manifegtigvariant
configuration observables, but we lack analogous gauge-invariant momentum ob-
servables not least because the differential geometry of the moduli gpat@
(and in extenso of the cotangent bundlg A, /G) has not been well developed
or understood® These are some of the technical difficulties one encounters in
trying to develop classical®*>-smooth differential geometric ideas on spaces of
gauge-equivalent connections and exactly because of them one could “justify” the
ADG-theoretic perspective we have adopted in the present péper.

Now, what Ashtekar and Isham did to deal with some of the problems men-
tioned in the previous paragraph is to “downplay” the structure of the spage&;
per se and rather work directly with the functions that live on that sg&ce&hus,
they defined the so-called holonor@y-algebra¢ = FA,,/G of C-valued func-
tions onA,, /G generated by Wilson loopW (¢) like the ones mentioned in footnote
228.2% ¢ was straightforwardly seen to be abelian, thus by using the well-known
Gel'fand-Naimark representation theorem they identifiedith the commutative
C*-algebraF of continuousC-valued functions on a compact Hausdorff topolog-
ical spacelt = Spe¢¢)—the so-calledsel'fand spectrum of.z% In turn, every
(continuous and cyclic) representatighof ¢ = F hasL?(Max(¢)) as carrier

231This refers to the usudl™ (Schwartz) topology (Mallios, 1986).
282principally motivated by this ellipsis, and as we noted earlier, (Ashtekar and Lewandowski, 1995)
explores further the possibility of developing classical (C&°-smooth) differential geometry on

/G-

233The reader is referred to Mallios (manuscript in preparation) for a more elaborate ADG-theoretic
treatment of moduli spaces of connectionsaisis gauge theories and gravity.

234Thjs is well in line with the general philosophy of ADG which we have repeatedly emphasized
throughout this paper and according to which, in order to gather more information and gain more
insight about (the structure of) “space’—whatever that may be—one should look for an “appro-
priate” algebra that encodes that information in its very structure. Then, to recover “space” and
perform the ever-so-useful in physics calculations (i.e., “geometrize” or “arithmetize” the abstract
algebraic theory so to speak), one should look for suitable representations of this algebra.

2351t must be noted however thegal connections4 were employed in Ashtekar and Isham (1992).
The reader should not be concerned about this technical detail here.

236The points ofSpe¢C) are kernels of (irreducible) representation€db C (i.e., homomorphisms
of € to C commonly known as “characters’), with the latter being the “standard” abelian involutive
algebra. In turn, these kernels are maximal ideal§,iso that equivalently one writes MaXJ for
I = Spec(€) (in the sequel, we will usSpe¢?), N, and Max{) interchangeably). Max{)
carries the standard Gel'fand topology and the element afe continuous with respect to it.
(Memo: the Gel'fand topology of)T is the weakest (coarsest) topology with respect to which the
functions inF are continuous (Mallios, 1986).)
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Hilbert space with respect to some regular measigeon 9t and, plainly, the
representatives of thé-valued Wilson loop operators ihact on the element¥
of L2(901) by multiplication.

Thus, while A, /G is the classical configuration space, quantum stédtes
naturally live on Max¢) and can be thought of as “generalized” gauge-equivalent
connections. In fact, Rovelli and Smolin conceived of a deep correspondence
between the spaces of (functions on) gauge-equivalent connections and (functions
on) loops, which could be mathematically implemented by the following heuristic
integral “device”:

T ()] := /A gtr(exppo ?g AV ([Alg)du([Alg) (137)

called the (non-linear and in general noninverti&lgloop transforrr—a variant
of the usual functional-analytic Gel'fand transfo??h Again, inT(¥) we witness
the need to find measures gn,/G.2*°

This last remark brings us to the main point we make about the importance
of the (abelian)C*-algebraic point of view (and the application of the Gel'fand
spectral theory that goes with it) on the moduli space of connections adopted by
Ashtekar and Isham based on the Rovelli-Smolin loop representation of Ashtekar’s
new variables in the context of canonical quantum general relativity:

the holonomyC*-algebraic perspective ad.,/G makes it clear that oneust adopt
a“generalized integration theof§ in order to cope with integrals such as (136) and
(137) and with the measures involved in them.

The idea to use “generalized” or “abstract measures” becomes “natural” in
Ashtekar and Isham’s work as follows: as we noted above, the holor@my
algebra® = F(A,./G) isfirsttranscribed by the Gel'fand-Naimark representation
to theC*-algebraF of bounded, continuous;-valued functions oi’s spectrum
Max(¢) having for carrier Hilbert space?(Max(¢), du). How can we realize the
measure g and the integral with respect tg4t

237The loop transform is supposed to carry one from the connection to the loop picture, and back
via T L However, forT ' to exist, a set of (algebraic) constraints—the so-called Mandelstam
constraints—must be satisfied by Wilson loops (Ashtekar and Isham, 1992; Loll, 1994).

238The Gel'fand transform may be viewed as a generalized Fourier transform (Mallios, 1986). The
reader is encouraged to read from (Ashtekar and Isham, 1992) a suggestive comparison made
between the loop and the Fourier transform. For an ADG-theoretic use of the Gel'fand transform, in
caseéA is a topological algebra sheaf (the “canonical” example of a unital, commutative topological
algebra being, of cours€>(M)—see remarks on Gel'fand duality subsection in 5.5.1), the reader
is referred to (Mallios, 1998a,b).

239n (137), [A]g represents a class gEequivalent connections irs,—an element of the moduli
spaced/G.

240The reader should refer to (Baez, 1994a,b) for a relatively recent treatment of generalized Diff(M)-
invariant measures on moduli spaces of nonabelian Y-M and gravitational connections.
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The aforesaid idea of “generalized measures” can be materialized @i*takgebraic
context by identifying/[-] with a stateon F—a (normalized, positive) linear form
on F, which is a member o . Then one thinks of{) as an abstract expression of
[ fdu(f € F). Inturn, having this integral in hand, the inner productigiiMax(<))
can be realized alo|W7) = [ WiWidp = s(W5Wp).24

We now move on to discuss briefly the covariant path integral (Lagrangian)
approach to quantum gravity, so that afterwards we can comment “cummulatively”
from an ADG-theoretic viewpoint on the heuristic mteg&lappearlng in (128)
in comparison with what we have said about both the canonical and the covariant
guantization schemes for gravity.

5.3.2. The Covariant (Lagrangian) Approach: The Diff(M)-Invariant Path Integral
Measure Problem

One of the main disadvantages of any approach to the quantization of gravity
based on the canonical formalism is the latter’s breaking of full covariance by
the unphysical 31 space-time split that it mandates. In the Ashtekar approach
for instance, one must choose a time slicing by arbitrarily foliating space-time
into spacelike hypersurfaces on which the self-dual connection variatjes
the main dynamical variables of the theory—are defined and canonical Poisson
bracket (classical) (131) or commutator (quantum) (134) relations are imp@sed.
The basic idea of a path integral quantization of gravity is not to force any such
physically ad hoc 3-1 split, thus retain full covariance of the theory.

In a Lagrangian (self-dual) connection-based formulation of gravitydffa
smooth space-time manifold (like Ashtekar’s in (129), but in all four space-time
dimensions), the path integral would be the following heuristic object

Z. = / o S d A (138)

where the integral is taken now over all the (self- dmr) connect|0n§A(+) over

the whole 4-dimensional space-time maniféld and*S.?) ash IS the 4-dimensional
version of the Ashtekar action (129) of the (self-dual) smooth connection variable
4 A 244 Of course, again because of the= Diff( M)-invariance of the theory,

241\ith w3 the complex conjugate of» (Note: the reader should not confuse this *-star with the
linear dual *-star inf".

242gince both of these schemes are essentially based on the classical differential geome®yof the
smooth space-time maniforld (i.e., they belong to category 1 in the prologue—in other words,
they are “C*-smoothness conservatiyevhich ADG evades, such a comparison is relevant here
and well worth the effort.

243Als0, by such a 3-1 decomposition one secures a well-defined Cauchy problem for the dynamical
equations (global hyperbolicity).

244However, it must be emphasized here thatid 3pace-time split is in a sense also implicit here.
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one would expect the “physical” path integral to be
Z. = / Ui d(ALg) (139)
448 /6

which, however, to make sense (even if only “heuristically’!) care must be taken
to make sure that one integrates over a single merh#4&€r’ from each gauge
equivalence clasél.[élf;;)]g in 4A(OZ)/Q. Among the aforementioned problems of
developing differential (and now integral) calculus on the moduli space of (non-
abelian) gauge (Y-M) theories and gravity, is the fact thatA4,, — A /G,
regarded as a principgtbundle, is nontrivial, that is to say, it has no continuous
global sections, which in turn means that there is no unique gauge choice, no
unique fixing or selecting a singfed) from each $A)15 in 4A%/G. This is
essentially the content of the well known Gribov ambiguity in the u€tafiber
bundle-theoretic treatment of gauge theoffés.

All'in all, however, again it all boils down to finding a measui@A]g)—in
fact, a Diff(M)-invariant one, since (139) involves smooth connections 6ffa
space-time manifold M—on the moduli spa‘bég)/g. Thus, we see how both
the nonperturbative canonical and the covariant approaches to quantum gravity,
whose formulation vitally depends on the classical differential geometric appa-
ratus provided by th€>°-smooth manifold (in fact, by the structure coordinate
ring C*°(M)) and its structure group Diff), encounter the problem of finding a
Diff( M)-invariant measure on their respective moduli spaces. Below we argue how
the ADG-theoretic basis, on which our finitary, causal, and quantal vacuum Ein-
stein gravity (124) and its possible covariant path integral quantization (128) rest,
bypasses completely significant obstacles that these “conventional” apprdaches

Z+ in (138) is normally regarded asteansition amplitudeand the dynamical transition that
it pertains to is between “boundary spatial configuration 3-geometries‘—45§9,4(1+)]zg and

CI>2[3A(2+)]Zg—with the bulk 4-space-time geometry interpolating between them. One usually

Wiites Zoo|g? =< @2|®1 >= [p7 ¢ S dA.

245The reader should refer to Mallios (1998b) for a more elaborate, albeit formal, treatment, from
an ADG-theoretic perspective, of the Gribov ambigutia’(Singer, 1978). What must be briefly
mentioned here is that the ADG-theoretic treatment of the Gribov ambiguity in Mallios (1998b)
marks the commencement of the development of a full-fledged differential geometry—again of
a nonclassical, nod*°-smooth type—on the moduli space of gauge-equivalent connections. For
instance, one could take as starting point for this development the following motivating question:
what is the structure of th&tangent spaceT (Op, D) to an orbit Op of a connectiorD in the
affine space AE of A-connections on a vector she&é? For example, in subsection 3.4 we saw
that, ADG-theoreticallyT (Op, D) can be identified With% (98) and, as aresult,(M(&), Op)
with T(Op, D)’s orthogonal complement (i.eSp!) (101). However, for the latest results from the
most analytical ADG-theoretic treatment of moduli spaces of connections, the reader should refer
to Mallios (manuscript in preparation).

248«Conventional” here means “classical,” in the sense that all these approaches are based on the usual
differential geometry of *°-manifolds. As we time and again said before, these are approaches that
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to quantum general relativity encounter. Altogether, we emphasize that our ap-
proach is genuinely backgroui@d®-smooth space-time-free, fully covariant and
that, based on the fact that arguably all diseases (i.e., singularities, unrenormal-
izable infinities and other classical differential geometric anomalies) come from
assuming up-froniM, it is doubtful whether anyC*-conservative” attempt to
quantize general relativity (by essentially retainig will be able to succeet!’

In connection with the last remarks, cogent arguments coming from the au-
thors (Finkelstein, 1988, 1991; Jacobson, 1995) further support the position that
the attempt to quantize gravity by directly quantizing general relativity (i.e., by
trying to quantize Einstein’s equations to arrive at the quantum of the gravita-
tional force field—the graviton) is futile, if one considers the following telling
analogy: It is as if one tries to arrive at the fine structure of the water molecule
by quantizing the Navier-Stokes equations of hydrodynamics. We definitely agree
with this position; however, as we saw before and we will crystallize in the next
subsection, we would not go as far as to maintain that to arrive at a genuinely
quantum theoresis of gravity one should first arrive at a quantum description of
(the background) space-time structure itself, dpace-time does not existe., it
has no physical meaning). Rather, going quite against the grain of theories that
advocate either a “continuous” (classical) or a “discrete” (quantum) space-time,
we will hold that a genuinely covariant approach to quantum gravity should in-
volve solely the dynamical fields (and their quanta) without any dependence on
an external “space-time substrate,” whether the latter is assumed to be “discrete”
or “continuous.” This is what we mean by tufly covariant (and “already quan-
tum’) picture of gravity:only the dynamical gravitational field (and its quanta),
and no ambient (external/background) space-time which forces one to consider its
(i.e., the space-time’s) quantization, exists.

5.4. Cutting the Gordian Knot: No C*°-Smooth Base Space-Time Manifold
M, no Diff(M), No Inner Product Problem, No Problem of Time, a “Fully
Covariant,” “Purely Gauge-Theoretic” Lorentzian Quantum Gravity

In the present section we show how our finitary, ADG-based scheme for
“discrete” Lorentzian quantum gravity totally avoids three huge problems that the
differential manifold M2#8, or more precisely, its “structure grou@”"= Diff( M)?4°

belong to the category 1 of “general relativity and manifold conservative” scenarios mentioned in
the prologue.

247Even more iconoclastically, in the following subsection we will maintain thascheme is already
quantum, so that the quest for a quantization of gravity is in effect “begging the question.”

2480r ADG-theoretically, the assumption 6f for structure sheah.

249Here the term “structure group” is not used exactly in the usual principal bundle and gauge-theoretic
sense. Rather fittingly, it pertains to the “symmetries” of the structure sheaf A, which in the classical
case is identified witiCy .
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presents to both the canonical and the covarti@mmanifold-based approaches
to quantum gravity.

First, we would like to state up front the main lesson we have learned from
ADG, which lesson, continuing the trend started in Mallios and Raptis (in press),
we wish to promote to the following slog&#?:

Slogan 2. One can do differential geometry without using any notion of calculus;
or what amounts to the same, without using at all (background) differential (i.e.,
C*-smooth) manifolds (Mallios, 1998a,b, 1999, 2001a,b, 2002, manuscript in
preparation; Mallios and Raptis, 2001, in press; Mallios and Rosinger, 1999, 2001).

Thus, in the present paper, where ADG was applied to the finitary-algebraic
regime to formulate a causal and quantal version of vacuum Einstein-Lorentzian
gravity, no classical differential geometric concept, construction, or result, and,
of course, no background (or baséj’-smooth space-time manifold, was used
Precisely in this sense, our formulation of (124) and its covariant quantum version

(128) is genuinely background manifold-free@f-smoothness-independent.

Another basic moral of ADG which is invaluable for its direct application
to (quantum) gravity and (quantum) Y-M theories, and which nicely shows its
manifest evasion of the classical differential geometrg 8fmanifolds, can be
expressed diagrammatically as follows

|CDG zC"O-ManifoId| A(—a)> Tangent Bundles Bﬂ C>®-Vector Fields
=C% c

@)1t A=CF(Xc M) ()t A=CE(X C M) (©) L adves”

(A-connections)

arbital sheaf morphism
‘ ADG = arbitary baseX ‘ ﬁry«x Vector Sheaves — P q‘ Differential Equations*
-

)

(140)

which we can put into words again in the form of a slogan:

Slogan 3. Unlike the Classical Differential Geometry (CDG), whose (concep-
tual) development followed the path

CDG = Smooth Manifoldsﬂ Tangent bundles(i

Smooth Vector Fields™ Differential Equations& Physical Laws)

schematically described in (140), and which can be read as folktv@ssmooth
manifold was made for the tangent bundle, which in turn was made for the vec-
tor fields, which were finally made for the differential equations (modelling the

250This is the second slogan in the present paper. Recall the first one from the beginning of section 4.
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local laws of classical physi¢it) in contradistinction, the development of ADG
followed the path

ADG — @ Vector Sheaves— ) Differential Equations

which can be read as follow&DG refers in an algebraicocategorical way di-
rectly to the dynamical fields—represented by pairs such&sH)'—without the
intervention (neither conceptually nor technically) of any notion of (background
geometric manifold) space(time), or equivalently, independently of any interven-
ing coordinates. In other words, ADG deals directly with the differential equa-
tions (the laws of physics), which now are “categorical equations” between sheaf
morphisms—thA-connectiong acting on the (local) sections of vector sheaves

£ under considerationOf course, one can recover CDG from ADG by identify-
ing one’s structure shed# with C§y22 thus, in effect, “descend” from abstract,
algebraic in nature, vector sheaves to the usual smooth vector or frame (tangent)
bundles over (to) the geometrical base space-fifienanifold M(c’, d’).

5.4.1. Avoiding the Problems of Diff(M) by Avoiding M

Below, we mention three problems that our finitary-algebraic, ADG-based
perspective on quantum gravity manages to evade completely. We choose to pro-
nounce these problems via a comparison between the canonical and the covariant
C*-manifold-based approaches to quantum general relativity described above, and
our ADG-theoretic locally finite, causal, and quantal Lorentzian vacuum Einstein
gravity. In particular, we initiate this comparison by basing our arguments on the
contents of footnote 214, which makes it clear what the essential assumptions
about theC*>-approaches to quantum gravity are, and it also highlights their char-
acteristic absence from our ADG-founded theory. In this way, the value of the
slogans 1-3 above can be appreciated even more.

1. The fundamental assumption of all the nonperturbati®econservative
approaches to quantum gravity, whether Hamiltonian or Lagrangian, is
that there is a background geometrical space-time which is modelled after
aC*>-smooth base manifold M hus, the point-events of M are coordina-
tized byC*°-smooth functions whose germs generate the classical structure
sheafA = Cp7; hence, the natural “structure group” of all thadebased
scenarios i§j = Diff( M).

2. The next assumption (of great import especially to the canonical ap-
proach via the Ashtekar variables) we can read directly from footnote

251|n the concluding section we will return to comment further on the fact that the assumption of
a differential manifold ensures precisely that the dynamical laws of physics obey the classical
principle of locality.

252(a) in (140).
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214: there is a (frame) bundle isomorphism e between TM and an “inter-
nal” Minkowskian bundleZ 252 whose inverse defines a local vier-
bein (4-frame) field variable o254 and secures the faithful transference
of the classical*°-differential geometric structures, such as the smooth
(self-dual) connectionsly, the smooth Lorentzian metrig the volume
form ¢, the smooth vector fields (derivations) and covectors (differential
forms) etc, from7 to TM.2%5 In a nutshell,e™* ensures thalM comes
fully equipped with the classical (tangent bundle) differential geometric
apparatus.

3. When it comes to (especially the canonical) dynamics, one can easily
see how thi€*°-space-time bound language gives independent physical
existence and “reality” to the background (i.e., “external” to the dynamical
fields themselves) geometrical smooth space-time continuum itself, by
statements such as,

In this approact® the action of diffeomorphism group gives rise to two
constraints on initial data: the diffeomorphism constraint, which generates
diffeomorphisms preserving the spacelike hypersurface, and the Hamiltonian
constraint, which generates diffeomorphisms that move the surface in a time-
like direction?>”

In the canonical Ashtekar approach, this is concisely encoded in the as-
sumption that the smooth 4-frame field e is an independent (local) dynam-
ical variable along with the (self-dual) smooth spin-Lorentzian connection
1-form AL 258

By striking contrast, our finitary, causal, and quantal ADG-based approach
to Lorentzian vacuum Einstein gravity assumes neitfié?® (and, as a result,
no Diff(M) either), but perhaps more importantly, rerADG in a sense cuts

253We may coire the (local) “external” Lorentziar€>-manifold M soldering formit may be thought
of as the “umbilical cord” that ties (and feeds!) all the differential geometric constructions used
in nonperturbative canonical or covariant quantum general relativity with (from) the background
smooth manifoldM.

254By abusing notation, we also denote therbeinby e.

255Hence our calling e above a (local) “external” Lorentzif-manifold M soldering form. (Recall
also from footnote 214 that, which is pulled back by~ from 7 to TM, effects the canonical
isomorphism betweeiM—inhabited by vectors/derivations tangentNh and its dualT M*—
inhabited by covectors/forms cotangentvio)

256That is, the canonical approach to quantum general relatiilyAshtekar.

257Taken from the preface of the botkiots and Quantum Gravityhere Ashtekar and Lewandowski
(1994) and Loll (1994) belong. The constraints mentioned in this excerpt are precisely the four
“external” C*°-smooth space-time manifold Diff{)-constraints in (133).

258 And recall from (129) and (130) that the vacuum Einstein equations are obtained from deriving the
Palatini-Ashtekar action functionals with respeceto

259Thusit gives the smooth space-time manifold no independent physical (dynamical) reality “external”
to the dynamical gravitational gauge field itself (represented by the connection).
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the “umbilical cord” (e) that ties (and sustains differential geometricallyfthe
conservative approaches to (by) the background space-time manfoihd it
concentrates directly on (the physical laws for) the dynamical objects—in our
case, the (self-dual) fcqv- dynam@é” —that live and propagate on “it.” All in

all we must emphasize that

the sole dynamical varlable in our scheme is the reticular (self-dual) spin-Lorentzian
connection vanablé) (+) (in fact, the fcqv-E-L-field {IT, DT)) and ADG enables us

to formulate directly the dynamical equations for it without having to account for (i.e.,
without the mediation and support of) a background geometrical smooth space-time
manifold M. In this sense, our ADG-theoretic, connection-based approach is more
algebraic and more “pure gauge-theoretic” (i.e., “fully covariant"—see below) than
the approaches to gravity which are based on the clasSi€adifferential geometry

of the smooth space-time manifold (e.g., Ashtekar’s). At the same time, since there is
no “external” space-time manifold, there is no need either to perform the necessary
for the canonical quantization procedure Bspace-time split which, as we contended
earlier, breaks manifest covariance. Furthermore, iiffis now replaced, in a Kleinian
sense (Mallios, 2002), by the structure grcAan., of Aj- -automorphisms ofT (i.e.,

the group of the reticular transformations of the causon field itself—its dynam|ca| self-
transmutations so to speR). All in all, our approach is fully (gauge) covariafft:

Now that we have stated, and analyzed in glaring contrast t6heonservative
canonical and covariant approaches to quantum general relativity, the three slogans
underlying our fcqv- approach to Lorentzian vacuum Einstein gravity, we are in a
position to show how our theory simply evades the following three caustic issues
for nonperturbative quantum gravity:

1. The inner product problenin the canonical approach, this refers to the
problem of fixing the inner product in the Hilbert space of physical states
by requiring that it is invariant under Difi{). As noted earlier, in effect it
is the problem of finding a Diff{1)-invariant measure. The same technical
problem (i.e., the problem of finding a Diff{)-invariant measure) essen-
tially persists in the fully covariant path integral quantization approach to

2601t must be stressed that, according to the geometric (pre)quantization axiomatics (Mallios, 1998b,
1999, 2001b, 2002, manuscript in preparation) that we subjected our causai;fieldbetter, its
associated fcqv-dynamo E-L fieﬁ;f, ﬁf in Mallios and Raptis (in press), we can identify the latter
with its quanta (“particles”)—the causons (e.g., states of “bare” or free causons, when regarded as
bosons—the “carriers” of the dynamical field of quantum causality, are represented by sections of
line bundlesZ; associated with th@ﬁs (Mallios and Raptis, press)). Thus, one can also think of
Alt; as acting directly on the dynamical quanta of quantum causality—the causons. Shortly, we will
revisit some basic geometric (pre)quantization arguments from Mallios (2001b) to further support
these remarks.

261ye are tempted to call our scheme, after Einsteimjtary” field theory since all that there is in
it are the dynamical fields (plus their associated quanta and their automorphisms) and no ambient,
external space-time present. Because we have formulated gravity purely gauge-theoretically (i.e.,
as the dynamics solely of the connection), we may alternatively coin our schremeegaugé field
theory.
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quantum general relativity (138) and (139). Since our theory is genuinely
C*-smooth manifold M-free, thus also manifestly DNf}-independent,
it simply avoids the inner product problem. We thus write

| No smooth manifoldvi | = |No Diff(M) | = ‘ No inner product problerb (141)

However, it must be said that if one employs finite dimensional (Hilbert)
space representations for the incidence algebras modelling qausets as in
(Raptis and Zapatrin, 2001; Zapatrin, 1998pand one regards the latter
spaces as inhabiting the stalks of associated fmsheaves?Rﬁ {loe even
if one just works with the aforesaid associated line shezi&,'esf states
of “bare” or free causons, the issue of finding well-defined integration
measures on them still persists. Generalized integration theory (Bourbaki,
1969) andRadon-type of measures vector sheaves similar to the afore-
said “cylindrical” ones employed by Ashtekar and Lewandowski (using
Gel'fand’s spectral theory) in the context of the holond@iiyalgebraic ap-
proach to canonical quantum general relativity (Ashtekar and Isham, 1992;
Ashtekar and Lewandowski, 1994, 1995), are currently under intense de-
velopment by ADG-theoretic means (Mallios, manuscript in preparation).
Such measures are expected to figure prominently in (and make mathe-
matical sense of) heuristic (path) integrals like (136)—(139) and, in the
finitary case, like (127) and (128%

2. The problem of timeAgain in the context of canonical quantum general
relativity, this refers to the problem of requiring that the dynamics is en-

coded in the action of Diff(M) on the (Hilbert) space of physical states.
Here too, our evasion of this problem is rather immediate:

| No smooth spacéime manifold M | = ‘ No Diff(M) ’ = | No problem of tim#

(142)

For, as we have repeatedly : argued above, our theory deals directly with
the dynamical physical object®( 6 ) themselves and their (self-)trans-
formations (‘structure symmetnes@ut. , and does not posit the existence
of an external (background) space-time continuum, let alone regard the

262t note that in these works the incidence algebras are of a topological, not a directly causal, nature.

283|ndeed, of special interest to ADG is to develop a general and mathematically sound integral calculus
on the moduli spaces of gauge-equivalent connections on vector sheaves (those in particular that
appear in the ADG-theoretic treatment of Y-M theories and gravity (Mallios, 1998a,b, 2001a))
again,independently of the classical, differential manifold-based, th@dajlios, 2002). Such an
abstract or generalized integration theory could be regarded as the ADG-theoretic analogue of the
generalized integration and measure theory that has been developed (albeit, stilPfir¢tbatext!)
in the literature (Baez, 1994a,b).
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latter as being physically significant in any w&%.In our schemeAut;
acts directly, via its representations alluded to in 1 above, on the associated
(line) sheaves of bare causon states (Raptis and Zapatrin, 2001).

3. The problem offull covariancé: As in 2 above, this problem essentially
comes from assuming that the external, background space-time manifold
is a physical entity—and not paying attention just to the dynamical objects
(fields and their particles) that live on that “space-time” which, anyway, are
the only “physically real” (“observable”) entities. One is tempted to say
here that the reason for this (problem) was in effect the lack of having thus
far an appropriate framework to develop differential geometry—at least
to the extent that ADG for instance has developed—different from that
of the classical theory. In this respect, we may still recall here Einstein’s
“confession” in (Einstein, 1949):

... Adhering to the continuum originates with me notin a prejudice, but arises
out of the fact that | have been unable to think up anything organic to take its
place. ..

which we will mention again in subsection 6.1 in connection with the
singularities that assail the classical theory. In other words, the desirable
scenario here is

the formulation of the (quantum) gravitational dynamics solely in terms of
the connection D, or more completely, in terms of the “full,” “unitary” or
“pure” E-L field (€1, D), and nothing else—in particular, without referring

to an external (background) space-time (whether the latter is assumed to be
discrete or a continuum).

As we saw earlier, in the canonical (Hamiltonian) approach to quantum
general relativity there is a manifest breaking of covariance by the nec-
essary 3-1 dissection of the (external) space-time continuum into space
and time. Also, in a supposedly covariant path-integral-type of quantiza-
tion scenario for Lorentzian gravity like (138) or (139), although there is
no such an explicit external space-time split, there still persists however
(built into the very CDG-formalism employed) the assumption of an ex-
ternal (background) geometrickl experiencing, for instance, problems
like 1.266

264The reader should refer to the concluding section where further criticism is made of the base space-
time manifoldM and its differentiable automorphisms Diff(), as both are regarded as the last
relics of an absolute, ambient, inert (nondynamical), ether-like substance.

265gee further remarks on geometric (pre)quantization that follow shortly.

266 et alone that in the actual implementation and interpretation of the path integral as a dynamical
transition amplitude in the kinematical (moduli) space of gravitation 4-connections, “boundary 3-
geometries,” which break full covariance, are implicitly fixed at the end-points of the otherwise
indefinite integral (see footnote 244).
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5.4.2. A Brief Note on Geometric (Pre)quantization

Now that we have argued about how our theory can evade completely the inner
product (Hilbert space) problem and the problem of time essentially by avoiding
altogether the background and its “structure group” Diff{1), as well as how
it may used to formulate a “fully covariant” (quantum) dynamics for finitary and
causal vacuum Einstein-Lorentzian gravity, we would like to say a few words about
another concrete application of ADG which further supports those arguments.
This application concerns the subject of the so-caledmetric (Pre)quantization
(GPQ) (Mallios, 1998b, 1999, 2001#).

We read from (Mallios, 2001b) that the main aim of GPQ is to arrive at a quan-
tum model of a relativistic particle—which is assumed to be in the spectrum (i.e., a
so-called quantum particle excitation) of a corresponding quantum figitheut
having to first quantize the corresponding classical mechanical sy&emms
and Woodhouse, 1976). In other words, GPQ aspires to a quantum description
of elementary particles by referring directly to their (“second quantized”) fields
(i.e., without the mediation of the procedure of first quantization of the classical
mechanical or field theory and of the conventional Hilbert space formalism that
accompanies it). On the other hand, it is well known that GPQ heavily rests on
the usual differential calculus @°-smooth (symplectic) manifolés; hence, it
is no surprise that ADG could be used to generalize the foundations of GPQ, thus
gain more insight into the theory.

For instance, as we witnessed above, ADG completely circumvents the un-
derlyingC*-smooth space-time manifold and deals directly with the (algebraic)
objects that live on “it.” These objects are the dynamical fields themselves (with-
out recourse to an external base space-time manifold) or equivalently, in a purely
second quantized sense, the elementary particles (quanta) of these fields. In fact,
the main objective of applying ADG-theoretic ideas to GPQ, basically motivated
by certain fiber bundle axiomatics originally laid down by Selesnick in Selesnick
(1983), is to show thatlementary particles—the quanta of the dynamical fields—
can be classified according to their spin in terms of appropriate vector sheéaves
In this respect, the main result of ADG applied to GPQ is that

states of bare (free) bosons can be identified with local sections of line she&f#s
while states of bare (free) fermions with local sections of vector she@wafsrank
greater than 1 (Mallios, 1998b, 1999, 2001b).

267|n what follows, we do notintend to present any technical details from (Mallios, 1998b, 1999, 2001b);
rather, we would like to give a brief outline of certain syllogisms and results of this application
that further vindicate the aforesaid evasion by our ADG-based theory of the three problems of
the background space-time manifold-based quantum general relativity theories whether they are
Hamiltonian (canonical) or Lagrangian (path integral). As noted in footnote 260, we gather results
mainly from Mallios (2001b).

2685ee remarks of Isham from Isham (2002) in the concluding paragraph of this section on GPQ.

269That is to say, vector sheaves of rank 1.
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To arrive atthat result, the firstauthor had to posit the following identifications,
or better, make the following bijective correspondences (“equivalences”), which
we readily read from Mallios (2001b):

1. States of elementary particles can be associated with (local) sections of
appropriate vector sheavés the latter being provided in the classical
theory by the sheaves of sections of vector bundles over the space-time
manifold M a la Selesnick (1983)°

2. An elementary particle—the irreducible constituent of matter—
corresponds uniquely, in a second quantized sense, to the quantum of
a particle field*; one writes:

|physica| particlq > |partic|e field|

(143)

3. Afield, hence its quanta (elementary particles), is completely determined
by its states. The latter, within the axiomatic framework of ADG, corre-
spond to local sections of suitably defined vector she&véd in all, one
writes

particle| <— |field | < [stateg «— [local sectiong < | vector sheaf

(144)

with the latter identification (local sectiors— vector sheaf) being, as a
matter of fact, a well-known theorem in sheaf the$ty.
4. In fact, as we saw earlier, by “field” ADG understands the paiiY).>"2

270By Selesnick’s work (Selesnick, 1983), these bundles correspond to finitely generated projective
modules over the topological algel& (M) of the smooth space-time manifold. ADG'’s prim-
itive assumption of a general structure sheaf A other tfgngeneralizes Selesnick’s bundles to
vector sheaves§ that are locally freéd-modules of finite rank, as we saw before.

271The notion of “field” being regarded here as an irreducibipélement of the theory, in the same way
that Einstein thought of it aan independent, not further reducible, fundamental con(€pistein,
1956).

272That is to say, any (vector) sheaf is completely determined by its (local) sections (Mallios, 1998a,b).
In fact, in Mallios (1998a) this has been promoted to the following important sl@ysheaf is its
sections So, there is a very close physico-mathematical analogy lurking in (Ifi¢)e same way
that a sheaf is completely determined by its sections, an elementary particle—i.e., the quantum of
a field—is completely determined by its states

273Thjs vector sheaf-theoretic conception of a field by ADG comes as an abstraction and vector
sheaf-theoretic generalization of Manin'’s fiber bundle-theoretic definition of the Maxwell’s field of
electrodynamics as the paiff1ax, Pmax) consisting of al{ (1)) connectiorDpuax on a line bundle
Lmax of “photon states” (Manin, 1988). It is also important to remark here that, semantically, ADG
regards the connectioP asthe dynamical field propemwhile £ asthe carrier (state) space of
(the particles or quanta of) the fieldn fact, bothD and & are needed for formulating the laws
of nature (“differential equations”) aS provides us with the sections (states of the particle—the
“Being” of the particle so to speak) on whi@acts (i.e., dynamically transforms the particle—the
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5. Finally, and very briefly, starting from work by Selesnick in (Selesnick,
1983), the firstauthor was led to realize that one can model the collection of
guantum states of free elementary particleftiyely generated projective
A-module¥* and then, depending on their spin, classify them to free
bosons whose states comprise projective A-modules of rank 1fread
fermionshaving for states elements of projectAwenodules of rank greater
than or equal to 25 Then, the transition to locally finit&-modulesE
of finite rank (i.e., the vector sheaves of ADG) was accomplished by
using the Serre—Swan theorem (suitably extended from the Banach algebra
A = C%(M) on a compact Hausdorff manifoldl to general topological
non-normed (non-Banachable) algebras suctia@\)) in order to go
from the aforesaid finitely generat&d°(M)-modules to smooth vector
bundles orM. Then the latter can provide us with the (local) sections we
need to build ou€s.

6. All in all, the general result of applying ADG to GPQ is the following
“categorical” statement: (Mallios, 1998b, 1999; Mallios and Raptis, in
press)

every (free) elementary particle is (pre)quantizable (i.e., itadmits a (pre)quantizing
line sheaf).

It must be noted here that the sheaf-cohomological classification of our fcqv-
E-L fields (D;, EiT) and their quanta (causons) in Mallios and Raptis (2002) is
essentially an application of the results of the ADG-theoretic perspective on GPQ
above to the finitary, causal, and quantal regime. In toto, and this is the main reason
we briefly alluded to ADG visa-vis GPQ here,

being able, by circumventing ADG-theoretically the classical exte¢ffalspace-time
manifoldM, to refer directly to the dynamical objects (fields), we can show not only that
(the dynamics of) these objects are “fully covariant,” but also that they are “intrinsically”
of a quantum natur&’® so that the quest for a “blindfolded,” head-on quantization of
space-time and general relatiify appears to be begging the question. Indeed, since
our scheme is “fully covariant,” “inherently quantdff and it certainly does not arise
from “quantizing somehow the classical theory,” we strongly doubt whether actually

“Becoming” of the particle so to speak). It is conceptually lame, perhaps even “wrong,” from the
ADG-theoretic perspective to think éf(“state”) apart fromD (“transformation of state”) and vice
versa. The concept of field in ADG, as the pair D), is a “holistic,” “unitary” or “coherent” one,
not separable or “dissectible” into its two constituents.

24Finiteness pertaining to the finite dimensionality of the representations of the particles” compact
structure (symmetry) gauge group.

275|n particular, by takingA to beC®(M) (Mallios, 2001b).

278That is, dealing directly and exclusively with the propagating field is equivalent to dealing directly
and solely with its dynamical quantum (particle).

2 That is, of the dynamics of the smooth gravitational field (whether this is represented by the metric
or the connectioumframe field) propagating on@™-space-time manifold.

278|n fact, we are tempted to regard these two characterizations of our theory (i.e., “fully covariant”
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quantizing a classical theory is physically meaningful af @IThus, with respect to the
ADG-based theory for fcqv-E-L gravity propounded here, to this last question whether
guantizing a classical theory (in our case, general relativity) is physically meaningful
at all, one might respond by remarking thhis always depends on the type of theory
that one employs in order to describe the physical laws through the corresponding
(differential) equations

The last remarks would strike one who is used to the idea that one should
be able to arrive at a quantum theory of gravity by quantizing somehow general
relativity (i.e., by employing a formal quantization procedure involving the usual
quantum mechanical concepts and mathematical structures such as “observables,
Hilbert spaces etc while still retaining the classical calculus-based framework for
both an external space-time and the dynamical laws for the now quantized fields on
it), as being at best odd, if we also quote the following passage from a celebrated
textbook that has nurtured generations and generations of theoretical physicists
(Landau and Lifshitz, 1974):

Quantum mechanics occupies a very unusual place among physical theories: it contains
classical mechanics as a limiting case, yet at the same time redflitais limiting
case for its own formulation.

the emphasizedréquires being here the “operative word'—precisely the one
we have challenged and doubted in the present pgépéior, as it was noted

at the end of subsection 5.3.2, we already have strong indications that trying
to quantize head-on general relativity is perhaps not the right way to a quan-
tum theory of gravity (Finkelstein, 1988, 1991; Jacobson, 1995). In a nutshell
then, we doubt that quantum gravity is, or better, will prove togo@ntized
gravity.

and “intrinsically quantum’) as being equivalent, for ADG refers directly to the dynamical fields
and their quanta. Some strong conceptual resonances with Einstein’s vision of a unitary field theory
(which can “explain” quantum phenomena) are pretty obvious here.

2TSFor instance, since first quantization is totally bypassed by GPQ, there is prima facie no need
for reasoning “conventionally” (i.e., by using Hilbert spaces, “observables” and the rest of the
conventional jargon, methods, and technical baggage of quantum mechanics) about causons and
their dynamics. In fact, the correspondence principle advocated initially in the literature (Raptis and
Zapatrin, 2000, 2001) about the incidence algebras modelling discrete and quantum topological
spaces should by no means be regarded as a “consistency” or “physicality check” of our theory (i.e.,
as if our theoryshouldyield classical gravity as a “low energy or weak gravitational field limit” in
the same way that the other discrete space-time or continuum-based approaches to quantum gravity
are expected to). From the purely ADG-theoretic point of view, immediate contact with the classical
theory is established simply by settiAg= Cy.

2800ur emphasis.

281|n our case, one should substitute the word “mechanics” by “gravity” or even by “general relativity”
in the quotation above in order to get a better feeling of the point we wish to make. (Of course, this
is an imaginary, “wishful thinking” situation in which we are talking about quantum gravity as if it
has already been formulated!)
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We would like to close this discussion of the ADG-theoretic perspective on
GPQ with some very pertinentremarks of Isham in his latest paper (Isham?2002)
which emphasize precisely how the (geometric) quantization of a classical theory
is fundamentally (and quite a priorily, ad hoc, thus inappropriately—especially for
guantum gravity research) based on the classical differential geometry of smooth
manifolds (essentially because the conventional quantum theory itself, which we
apply when we wish to quantize a classical theory, is based on the manifold model
for space-time?).

...Ingeneral, [when we start from a classical theory and then “quantise” it], the config-
uration space (if there is on€) for a classical system is modelled mathematically by a
differentiable manifold and the classical state space is the co-tangent Aur@lerhe
physical motivation for using a manifold to represent Q again reduces to the fact that we
represent physical space with a manifaldThus, in assuming that the state space of a

classical system of the for*Q we are importing into the classical theory a powerful

a priori picture of physical space: namely, that it is a differentiable manfffidhis

then carries across to the corresponding quantum theory. For example, if “quantization”
is construed to mean defining the quantum states to be cross-sections of some flat vector
bundle over Q, then the domain of these state functions is the continuum space Q

This is more or less how (second) “quantization” was originally construed fiber
bundle-theoretically in (Selesnick, 1983) and then was treated ADG-theoretically
to suit GPQ ideas—albeit, in the characteristic absenc€%famooth base space-
time continuum (domain)—in (Mallios, 1998b, 1999, 2001b) and, in the finitary
space-time and gravity case, in Mallios and Raptis (in press). From this point
of view, this is another indication that our finitistic theory for vacuum Einstein-
Lorentzian gravity here may be regarded as being “already quantized” (better,
“inherently quantum’)—albeit, not at all “conventionally” in Isham’s sense of the
word (which means that one applies the usual quantum theory, with its classical
manifold conception of space and time, to an already-existing classical theory).

5.4.3. Remarks on Einstein’'s “New Ether” and Unitary Field Theory adsis
“Full Covariance”

Here we would like to bring together certain ideas that were expressed
above—in particular, in connection with the full covariance of our theory, the
identifications (143) and 144) in the context of geometric (pre) quantization, as
well as with some allusions made earlier to our hunch that our scheme is “already

282The excerpts below are taken from subsection 2.1.1 in Isham (2002).

283gee again related comments in our discussion of the UBaafiC in our theory in subsection 5.1.

284«There may be cases [like those arising in the context of geometric quantization theory]Svisere
a symplectic manifold that is not a cotangent bundle; for exangpte,S». However, | would argue
that the reaso® is assumed to beraanifoldis still ultimately grounded in aa priori assumption
about the nature of physical space (and time).” (Our addition is in square brackets.)
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guantum,” as it were, not in need of quantizing (i.e., applying quantum theory to)
the classical theory of gravity (general relativity)—and some of Einstein’s search-
ing thoughts about a new conception of “ether” in the light of his continuous unitary
field theory, singularities and the quantum paradi&nWe will see how Einstein

(i) tried to respect as much as he could general relativity which posits an ether-like
space-time background in the form of the differential manifold and the smooth
metric field imposed on this space-time continuum, (ii) always kept in mind the
earlier abolition of the material ether by special relativity so that he was careful
not to attribute mechanical properties to the ambient geometrical space-time con-
tinuum?28 and (iii) was deeply impressed by the discontinuous actions of (matter)
quanta, and he intuited—at times in an “oxymoronic” way which reflects precisely
the opposite tension in his mind between the continuous/geometrical actions of
(special and) general relativity and the discrete/algebraic ones of quantum theory—
a new kind of “ether” intimately related to the space-time continuum which may
be cumulatively referred to dke continuous unitary fieldrhen, we will discuss

the affinities and the fundamental differences between the latter, continuum space-
time metric field-based (geometrical) and our ADG-theoretic, connection-based
“fully covariant” and “inherently quantum” (reticular—algebraic) vacuum Einstein-
Lorentz gravity. Along with the Einstein references at the back, in the sequel we
borrow some of Einstein’s quotations and various ideas about this rebirth of the
notion of ether from Kostro (2000).

We commence with a quotation of Einstein, as early as 1924, in which, in
spite of the abolition of the “material” and “mechanical” luminipherous ether by
the special theory of relativity already almost two decades earlier, he insists that in
the context of a continuous field theory on a space-time continuum the notion of
ether (even if a generalized, nonmechanistic or nonmaterial one) is physically quite
indespensible. For example, he concludes the artiget denAther” (Einstein,

1991) as follows:

...But even if these possibilities should mature into genuine theories, we will not be
able to do without the ether in theoretical physics, i.e., a continuum which is equipped
with physical properties; for the general theory of relativity, whose basic points of view

surely will always maintain, excludes direct distant action. But every contiguous action
theory presumes continuous fields, and therefore also the existence of arf®éther.

285By ynitary field theory we do not refer so much to the more well known, life-long endeavor of
Einstein to unify gravity with electromagnetism and regard material particles as being special states
of condensed energy of (i.e., “singularities” or “discontinuities” in) the (continuous) unified field
(Bergmann, 1982), as to his general intuition—which is of course closely related to his well-known
unitary field theory project—that all physical actions (including guantum matter) must be described
in terms of (continuous) fields. However, below we are also going to comment on unified field
theory in the more popular sense of the term.

288n a sense, field theory is not mechanistic.

287\While, already 4 years earlier (Einstein, 1983a), he had stressed the “ether imperative” in physics
as follows:. .. The ether hypothesis must always play a part in the thinking of physicists, even if
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Therefore, for Einstein, the space-time continuum, supporting continuous
fields, provides a new ether paradigm. At the same time, he readily and repeatedly
denied the independent physical existence of space(time) apart from the continuous
field and the (in his own words) “physical continuum” (i.e., the ether) that supports
or “carries” it, much as follows:

...According to general relativity, the concept of space detached from any physical
content does not exist. The physical reality of space is represented by a field whose
components are continuous functions of four independent variables—the coordinates
of space and time. It is just this particular kind of dependence that expresses the spatial
character of physical reality. (Kostro, 208%)

and

... If the laws of this field are in general covariant, that is, are not dependent on a par-
ticular choice of coordinate system, then the introduction of an independent (absolute)
space is no longer necessary. That which constitutes the spatial character of reality is
simply the four-dimensionality of the field. There is no “empty” space, that is, there is
no space without a field. (Kostro, 20683

and, in a sense that was emphasized throughout the present paper, he essentially
maintained that (the) space(time) continuum and, concomitantly, the (new) ether
is inherent in the (gravitational) fiel¥:

...No space and no portion of space can be conceived of without gravitational po-
tentials; for these give it its metrical properties without which it is not thinkable at
all. The existence of the gravitational field is directly bound up with the existence of
space. . (Einstein, 1983a)

also

...according to the general theory of relativity even empty space has physical qualities,
which are characterized mathematically by the components of the gravitational potential.
(Kostro, 2000§°*

and

... Thus, once again “empty” space appears as endowed with physical properties, i.e.,
no longer as physically empty, as seemed to be the case according to special relativity.
One can thus say that the ether is resurrected in the general theory of relativity, though
in a more sublimated form. (Kostro, 20683

only a latent part.”

288page 175 and reference therein.

289again, page 175 and reference therein.

290wwhich, unlike in our algebraic, connection-based theory however, he identified with (the components
of) the metric tensog,,,

291pgain, page 111 and reference therein.

292page 111 and reference therein.
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furthermore

... There is no such thing as empty space, i.e., a space without field. Space-time does
not claim existence on its own, but only as a structural quality of the field...” (Einstein,
1954)

and

...space has lost its independent physical existence, becoming only a property of the
field...” (Einstein, 19562

while, for the sake of operationality or instrumentality (i.e., for the existence of
measuring rods and clock®)

... According to the general theory of relativity, space without ether is unthinkable; for

in such space, not only would there be no propagation of light, but also no possibility
of existence for standards of space and time (measuring rods and clocks), nor therefore
any space-time intervals in the physical sensg(Einstein, 1983a)

Thus, eventually, he was led to make the following (telling for us) conceptual
identification:

... Physical space and the ether are only different expressions for one and the same
thing...” (Kostro, 20003%®

Moreover, keeping the identification above in mind, we note that Kostro, in (Kostro,
2000y¥°¢, expresses concisely how this new ether may culminate in the formulation
and serve as the basic underlying concept of a unified field theory (in the more
popular sense), as follows:

... The last step in the development of the relativistic concept of the ether would be
the creation of a unified field theory in which a unification of gravitational and elec-
tromagnetic interactions is achieved and in which matter consisting of particles would

293This brings to mind the remarks, albeit in the context of the flat space-time (quantum) field theory
of matter, of Denisov and Logunov: “. Minkowski was the first to discover that the space-time,
in which all physical processes occur, is unified and has a pseudo-Euclidean geometry. Subsequent
study of strong, electromagnetic, and weak interactions has demonstrated that the pseudo-Euclidean
geometry is inherent in the fields associated with these interactioRseudo-Euclidean space-
time is not a priori, i.e., given from the start, or having an independent existence. It is an integral
part of the existence of matter,. it is [always] the geometry by which matter is transformed
(Denisov and Logunov, 1983). Indeed, back in subsection 5.1.1, and shortly in our comments on
Gel'fand duality (5.5.1), we argue how the geometrical structure of what one might call “space-
time” (including its topology and differential structure) is inherent in the algebraic—dynamical field
of quantum causality in the same way that the geometrical notion of curvature is already inherent
(ultimately, derives from) the dynamical connection field, which is the sole physically meaningful
entity in our theory.

294 And this shows just how important for the physical interpretation of the theory Einstein thought the
operational foundations of general relativity are.

295page 174 and reference therein.

296Bottom of page 105 and top of page 106.
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constitute special states of physical space. Thus far, the attempts to develop such a theory
have been unsuccessful, the reason lying not in physical reality, but in the deficiencies
of our theories. It would be ideal to develop such a unified field theory in which all the
objects of physics would come under the concept of the ether. Einstein pointed out this
problem at the very beginning of his artié%: . .. one can defend the view that this

notion [i.e., the ether] includes all objects of physics, since according to a consistent
field theory, ponderable matter and the elementary particles from which it is built also
have to be regarded as “fields” of a particular kind or as particular “states” of space.

This prompts us to cast, in complete analogy to the ADG-theoretic identifica-
tions in the context of geometric (pre)quantization in (143) and (144), Einstein’s
conceptual identifications above asesuf® of his unitary field theory program,
as follows:

| elementary particles/matter quar1ta—> | states of the continous unitary fie'd—> | states of the spacetime continuqm

H (145)

(st o he new ey
In comparison with our identifications in (144), we note that since our ADG-
theoretic perspective on finitary, causal, and quantal vacuum Einstein-Lorentzian
gravity completely evades the smooth background space-time continuum and
is based solely on the fcqv-E-L fiel;, our (arguably more quantal, because
reticular-algebraic) version of Einstein's new ether above could be taken to be
the “carrier” of this causon field, namely, the vector shé&fitself. The latter in
close analogy to the inextricable relationship between the ether, the (continuous)
space(time), and the (gravitational) field that Einstein intuited, but with the promi-
nent absence of an external, backgrogftspace-time and our undermining of
the physical role played by the smooth gravitational metric figldsupported by
it, cannot be thought of independently of the fcqv-gravitational connection that it
carries and vice vers#?®

Now, since Einstein was well aware of the problem of singularities that plague
his geometric space-time continuum-based theory of géd¥jtgnd at the same
time he was “in awe” of the (successes of the) quantum revolution, he on the one
hand asked,

...Is it conceivable that a field theory permits one to understand the atomistic and
quantum structure of reality? (Einstein, 1956)

and on the other, quite paradoxically if we consider the conceptual importance
that he placed on the continuous field and the space-time continuum (i.e., the new

297Einstein’s article Kostro is referring to isJber denAther” (Einstein, 1991).

298gee again footnote 273 about this “holistic” or, quite fittingly, “unitary” ADG-theoretic conception
of the gravitational connection and the vector sheaf (of states of causons in our finitary theory) that
carries it—our version of Einstein’s “new ether.”

295ee quotations of Einstein subsequently and our discussion in the epilogue.
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ether) supporting it, he repeatedly doubted in the algebraic light of the quantum the
very geometrical ether (i.e., tli&°-smooth space-time continuum and the smooth
metric fieldg,, that it supports) that he so feverously propounded in the quotes
above3® For instance, until the very end of his life he doubted the harmonious
coexistence of the (continuous) field together with its particles (quanta) in the light
of the singularities that assail the space-time continuum, much as follows:

... Your objections regarding the existence of singularity-free solutions which could

represent the field together with the particles | find most justified. | also share this
doubt. If it should finally turn out to be the case, then | doubt in general the existence of
arational and physically useful continuous field theory. But what then? Heine’s classical
line comes to mind: “And a fool waits for the answer.” (1954) (Stachel, 1991)

How can we explain and understand this apparently “paradoxical” and “self-
contradictory” stance of his against the space-time continuura-vis-singulari-
ties and the quantur#f? Perhaps we can understand his apparently “circular” and
“ambiguous” attitude if we expressed the whole “oxymoron” in a positive way,
as follows: we believe that Einstein would have readily abandoned the continuous
field theory and the geometric space-time continuum of general relativity in view
of the “granular” actions of quantum theory if he had an “org#hiéinitistic—
algebraic theory to take its place. Alas, again in his own words just a year after he
concluded the general theory of relativity and at the very end of his life:

... But we still lack the mathematical structure unfortunately. (18%%6)
and

... But nobody knows how to obtain the basis of such a [finitistic—algebraic] theory.”
(195504

300see quotations in subsection 5.1 and more extended ones in the literature (Mallios and Raptis, 2001,
2002).

301That is, on the one hand, to argue for the geometrical space-time continuum, in the guise of the
new ether, which is inherent in the continuous unitary field representing the field together with
its quanta—the particles that may in turn be conceived as “singularities in the field,” and at the
same time on the other, exactly due to those singularities (e.g., the infinities of fields right at their
point-particle “sources’) of the manifold and the discontinuous, algebraically represented actions
of quanta, to urge us to abandon the geometrical continuous field theory and loalptoely
algebraic theory for the description of realiEinstein, 1956; Mallios and Raptis, 2001)—one
whosestatements are about a discontinuum without calling upon a continuum space-time as an aid
and according to whicthe continuum space-time construction corresponds to nothind1646)
(Mallios and Raptis, in press; Stachel, 1991).

3025ee quotation from Einstein (1949) and in subsection 6.1.

303For the whole quotation, see Mallios and Raptis (in press).

304This is the last sentence, in the last section of the last appendih@fMeaning of Relativity
(Einstein, 1956) appended in 1954. The whole quotation can be found directly at the end of Mallios
and Raptis (2001).
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We think that ADG, especially in its particular finitistic—algebraic application
here to Lorentzian vacuum Einstein gravity, goes some way towards qualifying as
a candidate for the (mathematical) theory that Einstein was searching for. Since
we are talking about Einstein’s unitary field theory and the mathematics that he
was searching for in order to implement it, we give below a very fitting passage
which concludes Ernst Straus” reminiscences of Einstein in Straus (1982):

... Einstein’s quest for the central problem for the ultimate correct field theory is gener-
ally considered to have failed. | think that this did not really surprise Einstein, because
he often entertained the idea that vastly new mathematical models would be needed, that
possibly the field-theoretical approach through the kind of mathematics that he knew
and in which he could do research would not, could not, lead to the ultimate @A8wer

that the ultimate answer would require a kind of mathematics that probably does not
yet exist and may not exist for a long time. However, he did not have the slightest doubt
that an ultimate theory does exist and can be discovered.”

We sum up this discussion of Einstein’s new ether by commenting on and
counterpointing some remarks of Peter Bergmann and Ludwik Kostro in (2000)
which apparently maintain that what Einstein had in mind when he talked about
this new ether in the context of unitary field theory was notittesmooth space-
time manifold per se, but the extra structures (such as the metric, for example) that
are imposed on it.

First, Kostro asked”

... Which mathematical structure of contemporary theoretical physics represents the
entity Einstein called “the new ether”?

to which Bergmann replied,

...In the last decades of his life Einstein was concerned with unitary field theories of
which he created a large number of models. So | think he was very conscious of the
distinction between the differential manifold (though he did not use that #&#raind the
structure you have to impose on the differential manifold (metric, affine or otherwise)
and that he conceived of this structure, or set of structures, as potential carriers of
physical distinctiveness and including the dynamics of physics.

Now, whether it is fortunate or unfortunate to use for the latter the term like ether? |
think simply from the point of view of Einstein and his ideas that in the distinction
between the differential manifold as such and the geometrical structures imposed on it
we could, if we want, use the term ether for the latter.

305See remarks by Bergmann and Kostro that follow shortly; especially Kostro’s words in footnote
313 about the mathematics that Einstein knew and used in order to model his unitary field theory.

308pages 164 and 165.

307In a talk titled Outline of the history of Einstein’s relativistic ether conceptitelivered at the
International Conference on the History of General Relativity, Luminy, France (1988) (Kostro,
2000).

308Eijnstein most of the time used the tetapace-time) continuuiour footnote).
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and to which, in turn, Kostro added,

| am certain that Bergmann was right when he claimed that the differential manifold
as such, which is used to model space-time without imposing upon it such structures
as metrics, etc. cannot be treated as a mathematical structure representing Einstein’s
relativistic ether.

Bergmann was right, because the four-dimensional differential manifold as such
is a mathematical structure of too general a nature, and it cannot physically define
distinctive features of the space-time continuum without imposing metrics and other
structures upon it. It is too general, because it can serve as an arena or background
for any macroscopic physical theory (and even perhaps a microscopic one, because the
debate over the status of the differential manifold in microphysics is ongoing). By the
act of imposing metrics (i.e., the recipe for measuring space and time intervals) and
other structures upon it, the structure enriched in such a way turns into something that
represents distinctive physical features of the real space-time continuum

We partially agree with Bergmann and Kostro insofar as their comments above en-
tail that the background differential space-time manifold itself is devoid of physical
significance and that what is of physical importance is the “geometrical” objects
that live on this base arena which, in Bergmann'’s words, “include the dynamics of
physics.” On the other hand, from the novel perspective of ADG, and we believe
that both Bergmann and Kostro would agree with us had they been familiar with
the basic tenets of ADG, we maintain that:

1. In general relativity, the smooth space-time manifold serves asthier
of the structures imposed on it—after all, this is how the structures like
metric, affine (Levi—Civita) connection etc acquire the epithet “smooth”
in front and becomemooth metricsmooth connectigretc3®® As such, it
can still be perceived as a passjwepriorifixed by the theorist, absolute,
ether-like substance which sets the classically unequivocal “condition or
criterion of differentiability” for the dynamical variations of these “phys-
ical” structures imposed on ¥ For, surely, if Einstein did not have the
background*-space-time at his disposal, the (classical) differentials that
the latter provides one with and the rules of the mathematical theory known
as (classical) differential geometry (calculus) of manifolds that these dif-
ferentials obey, how could he write the dynamical laws for the aforesaid
extra physical structures? And, arguably, in a Wheelerian seosthe-
ory is a physical theory unless it is a dynamical thedrlus, the usual
differential calculus provided Einstein with the basic mathematical tools

309with the important clarification, however, that it is a rather common mistake (made nowadays
especially by theoretical physicists) to think that the metric was assigned (originally by Gauss and
Riemann) on the manifold itself. Rather, it was imposed on (what we now call) the (fibers of the)
tangent bundle (tangent to whatever “space” they used as base space)! (revisit footnote 20). Thus,
the commonly used tergpace-time metrican be quite misleading.

310see our comments on the relativity of differentiability in the epilogue.
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311Thefo

which enabled him to write the dynamical equations for his continuous,
“ethereal” fields.

. As noted above, one should not forget that Einstein’s dissatisfaction with

the geometrical space-time continuum (manifold) came basically from
two sources: the singularities that assail general relativity and, of course,
the discontinuous and algebraic character of quantum mechanical actions.
In fact, at the very end of his life, and in the context of his unitary field
theory, he came to intuit that these two “problematic,” when viewed from
the space-time continuum perspective, sources may be in fact intimately
related®t

...Isitconceivable that a field theory permits one to understand the atomistic
and quantum structure of reality? Almost everybody will answer this question
with “no.” But | believe that at the present time nobody knows anything
reliable about it. This is so because we cannot judge in what manner and how
strongly the exclusion of singularities reduces the manifold of solutions. We
do not possess any method at all to derive systematically solutions that are
free of singularities. .

ADG, as applied here (and in Mallios and Raptis, 2001, in press) to a
locally finite, causal, and quantal vacuum Einstein gravity, “kills both
birds above with one stone”: on the one hand, it evadeg€thenanifold

and “engulfs” or “absorbs” singularities into whichever structure sheaf of
generalized arithmetics (or coordinates) one chooses to employ in order to
tackle the physical problem one wishes to study (Mallios, 2002; Mallios
and Raptis, manuscriptin preparation; Mallios and Rosinger, 260ahd

on the other, it offers us an entirely algebraic and finitistic way of doing
(the entire spectrum of the usual) differential geometry (Mallios, 1998a,b;
manuscript in preparation; Mallios and Raptis, 2001, in press; Mallios and
Rosinger, 1999). All in all, it is our contention that Einstein (implicitly)
guestioned the very (pseudo-)Riemannian differential geometry, which, in
turn, fundamentally relies on the differential space-time manifold.

. From the ADG-based perspective of the present paipere is nothing

physical about either an external background space-time (be it discrete
or continuous) or about the metric structure that we impose o®it

these grounds alone, Bergmann and Kostro's contention above that these
concepts may be regarded as representing Einstein’s new ether appears to
be unacceptable. On the other hand, we believe that our entirely algebraic
conception of the (gravitational) connection can be seen as the sole dy-
namical variable in a quantal theory of Lorentzian gravity. Fittingly then,

llowing quotation can be found again in the last appendix of (Einstein, 1956). Itis the extended

version of the one given a few paragraphs above.

312 pgain,

paper.

for more comments on singularities, the reader should go to the epilogue of the present
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the (associated) vector sheaf (of states of causons), which are not soldered
(i.e., localized) on ang>°-smooth space-time manifold whatsoever, may

be taken to be as the ADG-theoretic analogue of Einstein’s “new ether”:

it is the carrier of the fcqv-E-L field.

4. Finally, in view of the words of Feynman and Isham in the beginning of
the present work, as well as what has been shown, partially motivated by
these (or rather, “postanticipatorily”), in the present pawersimply have
to disagree with Kostro’s contention that there is still a possibility that
the smooth manifold can serve as a (space-time) background for a micro-
physical theory—in particular, in the (feverously sought after) quantum
theory of gravity Although, admittedly, Einstein did not know and use the
differential geometry of smooth manifolds the way we do today (e.qg., fiber
bundle theory¥;? he still had the tremendous physical insight to anticipate
and foreshadow subsequent thinkers and workers in quantum gravity, like
Feynman and Isham for example, who have been led by their own quests
to conclude thathe C*°-smooth model of space-time fares popttyput
it mildly, 34 in the quantum (gravity) regime

5.4.4. Brief Remarks on “The Matter of the Fact”

Since we have just commented on Einstein’s unitary field theory, since in
causet theory there has been a strong indication lately that one can derive matter
fields directly from causets (Rideout and Sorkin, 2000), and also since our scheme
so far has focused solely on pure vacuum gravity (i.e., without the inclusion of mat-
ter actions and other gauge force fields), we conclude this subsection by making a
very short comment on the possibility of including matter and other gauge field ac-
tions in our locally finite, causal, and quantal theory. Our brief addendum is simply
that, primafacie., the inclusion of fermionic matter fields (e.g., electrons), their con-
nections (e.g., Dirac-like operators), as well as their relevant gauge potentials (e.g.,
electromagnetic field) can be straightforwardly implemented ADG-theoretically
as follows:

1. In line with our comments earlier on GPQ, the (states of) other gauge
(boson) and matter (fermion) fields can be modelled by (local) sections of
the relevant line (rank= 1) and vector (rank 1) (fin)sheaves (here, over
a causet), respectively.

313And at this point we agree with Kostro when he says thain the physical space-time continuum
model in his Special Theory of Relativity and General Theory of Relativity, and in his attempts
to formulate a unitary relativistic field theory, Einstein could not apply the tools and methods of
the contemporary theory of differential manifolds and the structures we use with them, because he
simply did not know them in the form in which they are taught and applied tod#éiostro, 2000,
p. 164).

314Not to say “fails miserably.”
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2.

Their corresponding (gauge) connections will be modelled by their rele-
vant finsheaf morphisms, and their (free) dynamics by equations involv-
ing (the field strengths of) these morphisms (which dynamics, in turn, by
the very categorical definition of those finsheaf morphisms and the co-
variance of their corresponding field strengths, will be manifestly gauge
Ui-invariant).

. Interactions between the matter and their gauge fields will be algebraic

expressions involving the relevant finsheaf morphisms coupled to (i.e.,
acting on) the aforesaid (local) sections.

. In toto, in the finitary case of interest here, 1-3 will be finitistic, causal,

explicitly independent of an external, underlying (i.e., backgrouiteh
smooth space-time continuum (i.e., “fully covariant”), “purely gauge-
theoretic,” and “inherently quantum,” as it was the case for the vacuum
gravitational field elaborated in the present paper.

However, for more information about the general ADG-theoretic treatment of
(nongravitational) gauge (i.e., electromagnetic and nonabelian Yang—Mills) theo-
ries and their quantum matter sources, the reader should refer to Mallios (2002).

5.5. Comments on Gel'fand Duality and the Power of Differential Triads

We close the present section by commenting briefly on the notion of Gel'fand
duality—an idea that we repeatedly alluded to and found of great conceptual im-
port in the foregoing. We also illustrate how powerful the basic ADG-theoretic
notion of differential triads is for establishing continuum (“classical”) limits for
a host of (physically) important mathematical structures that we encountered ear-
lier during theaufbauof our locally finite, causal, and quantal vacuum Einstein

gravity.

5.5.1. Gel'fand Duality: From Algebras to Geometric Spaces and Back

By Gel'fand duality we understand the general “functional philosophy” ac-
cording to which, informally speakinthe variable (argument) becomes function
and the function variable (argumentpne could symbolically represent this as

follows

f(x) > %(f) (146)

For example, in the previous section we noted that our work with (finsheaves of)
incidence algebras associated with (over) the finitary topological posets of Sorkin
is essentially based on Gel'fand duality so that, in discussing inverse and inductive
limits of those posets and (the finsheaves of) their incidence algebras respectively,
we ended up concluding thaspace(time) is categorically or Gel'fand dual to

the physical fields that are defined tih.” This is precisely the semantic content
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of (146), but let us explicate further this by starting from the classical and well-
understood theory.

From the classical manifold perspective, Gel'fand duality has an immediate
and widely known application: the (topological) reconstruction 6Pasmooth
manifoldM as the spectrumv of its algebra’*>° (M) of smooth functions (Mallios,
1986). To describe briefly this, I&fl be a differential manifold and one of its
points. Consider then the following collection of smo&tvalued functions oM

Iy = {¢ : M = Rj¢(X) = 0} C ®C®(M) (147)

It is straightforward to verify that, is a maximal ideal ofC>°(M) and that the
quotient of the latter by the former yields the red€>(M)/l, = R. In fact,

in complete analogy to the space Mdx¢hat we encountered earlier in connec-
tion with Ashtekar and Isham’s commutatigé-algebraic approach to the loop
formulation of canonical quantum gravity which employs the Gel'fand—Naimark
representation theoréf—it too a straightforward application of Gel'fand dual-
ity,316 the setSpe¢RC>°(M)] = M[RC>(M)] of all maximal idealsly(x € M) of
RCoo(M) such that

R < BC®(M) — BC®(M)/1, (148)

(within an isomorphism of the first term), is called tteal (Gel'fand) spectrum of
RCo(M). Furthermore, iffC>°(M)—regarded algebraic geometrically as a com-
mutative ring—is endowed with the so-called Zariski topology (Hartshorne, 1983),
or equivalently, with the usual Gel'fand topology,then the “pointwise” map

M 3 X —> Iy € M[RC>®(M)] (149)

can be shown to be a homeomorphism betwee@ghepology ofM (i.e.,M being
regarded simply as a topological manifold and the Gel'fand (Zariski) topology of
M[EC>(M)]. In toto, the essential idea of Gel'fand duality here is to substitute the

3151t must be noted however thBC>(M) is an abeliariopological algebranot a Banach, let alone
aC*—, algebra. In point of fact, it is well known th&C>(M) is not “normable” or “Banachable”
(éilov) (Mallios, 1986). On the other harfdZ%(M), for a compact manifold/, is the “archetypal”
commutativeC*-algebra—the very one Ashtekar and Isham used in Ashtekar and Isham (1992) to
represent.

316For example, the Gel'fand transform in (139) is a precise mathematical expression of a Gel'fand
duality between the space of connections and the space of loops involved in that theory (Ashtekar
and Isham, 1992; Ashtekar and Lewandowski, 1994). Furthermore, to “justify” the notation in (146),
we note how in (Mallios, 1998) the Gel'fand transform is defined (in the case of a topological algebra
A): let Abe a (unital, commutative, localig-convex) topological algebra, whose spectrum (i.e., the
set of nonzero, continuous, multiplicative linear functionals®giis JT(A). The latter is equipped
with the usual Gel'fand topology relative to which the m&psDi(A) — A, with X(f) := f(x),
are continuous. Then, the Gel'fand transform algebra of A is definefdzas{)‘( 1 X € A}

317The coincidence between the Gel'fand and the Zariski topolod@{fC>(M)] is due to the fact
that®C>(M) is a regular topological algebra (Mallios, 1986).



Finitary, Causal, and Quantal Vacuum Einstein Gravity 1599

(topology of the) underlying space(time) continuum by the (algebras of) objects
(functions/fields) that live on it, and then recover it by a suitable technique, which
we may coinGel'fand spatialization

As noted before, in the finitary context too, incidence Rota algebras'—ones
taken to model finitary topological spaces, not qausets—Gel'fand duality and,
in particular, the aforesaid method of Gel'fand spatialization was first applied in
Zapatrin (1998) and then further explored in the literature (Raptis and Zapatrin,
2000, 2001). The basic idea there was to substitute the continuous space-time
poset-discretization®, of Sorkin in (Sorkin, 1991) by functional-like algebraic
structures?;, assign a topology to the latter, and then show how the original finitary
poset topology may be identified with the latter. Thus, in complete analogy to the
classical continuum case above, we used Gel'fand spatialization and

1. Defined “points” in theR; s as (kernels of finite dimensional) irreducible
(Hilbert space) representations of them—that is, as elements of their prim-
itive (maximal) spectra Ma; .

2. Assigned a suitable topology on those primitive idé#ls.

3. Identified the Rota topology on the primitive spectra of @ie with the
Sorkin topology of theP;s.

That theQ; s are Gel'fand dual to thB s is concisely encoded in the result quoted

in section 4 that there is a (contravariant) functorial correspondence between the
respective categorigsand(3.3° In effect, this is precisely the correspondence that
enables one to go from categorical (inverse, projective) limifs ito categorical

co- (direct, inductive) limits in (finsheaves of incidence algebragimentioned
above3?° Furthermore, it was evident by the very structure ofsthe (asZ-graded
discrete differential manifolds) that, in tH&-dual picture of incidence algebras,
differential properties of the underlying space (time) could be studied, not just
topological. In other words, in the finitary setting, Gel'fand duality revealed a
differential structure that is encoded in tf2es which was “masked” by the purely
topological posets of Sorkin. With respect to the classical continuum paradigm of
Gel'fand duality mentioned above, the analogy is clear:

The P's are the reticular analogues Mf regarded solely as @-manifold, while the
Qis as the reticular analogues bf regarded as a differential manifold (Raptis and
Zapatrin, 2000, 2001).

318This is the aforementioned “nonstandard” Rota topology, since it was argued that the Gel'fand (or
the Zariski) topology on Ma®; is travial (i.e., the discrete—Hausdorff @—topology) (Raptis
and Zapatrin, 2000, 2001; Zapatrin, 1998).

319As also mentioned in footnote 162 in subsection 4.3, the correspondence (construction) “finitary
posets™ ‘“incidence algebras” is functorial precisely because B are simplicial complexes
(Raptis and Zapatrin, 2000, 2001; Zapatrin, in press).

3205 also noted in footnote 162, precisely because of the functoriality of the correspondence (con-
struction) “finitary posets™ “incidence algebras,” finsheaves in the sense of (Raptis, 2000) exist.
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In fact, precisely because of this suggestive analogy it was intuited in the literature
(Raptis and Zapatrin, 2000, 2001) that at the limit of infinite refinement of the
locally finite coverings of the bounded region Xfnot only the topological, but
also the differential structure of the continuum could be recovered. Heuristically
speaking, the; s’ revealing of differential geometric attributes suggested to us
that also “change®?! not only “static” topological or “spatial” relations, could be
modelled algebrically and by finitary means.

Thus, as it was described in the previous section, in the sequel, Gel'fand
duality associating incidence algebras (qausets) to locally finite posets modelling
causets was first exploited in Raptis (2000a) by using Sorkin’s fundamental insight
in Sorkin (1995) that itis more physical to think of a partial order as causality (i.e., as
a“temporal’ structure) than astopology (i.e., as a “spatial” structure). Furthermore,
Sorkin’s demand for a dynamical scenario for causets almost mandated to us the
use of sheaf theory—that is, to organize the incidence algebras modelling gausets
to sheaves of an appropriate, finitary kind (Raptis, 2000b). Thus, curved finsheaves
of incidence algebras were born as kinematical spaces for the dynamical variations
of qausets out of blending this causal version of Gel'fand duality with the ideas,
working philosophy and technical panoply of ADG (Mallios and Raptis, 2001, in
press).

The bottom line of all this is that the semantic essence of Gel'fand duality—
i.e., to substitute the topology of the background “space(time)” by the functions that
live on “it—found its natural home in ADG, which, as we emphasized repeatedly
above, similarly directs one to pay more attention on the objects (fields) that live on
space(time) rather than on space-time per se, independently of whether the latter
is taken to be a reticular base topological space or a continuum. In fact, we may
further hold that

at a differential geometric, not just at a topological, level, ADG in some sense “breaks”
Gel'fand duality??? since it tells us thathe differential geometric structure (mechanism)
comes directly from the (algebraic) objects that live (in the stalks of the algebra sheaves
on) space(time), not from the base space(time) it$&lf

321For any differential operator” models change.

322Gel'fand duality understood here as a “topological symmetry” between the underlying space(time)
and the objects (functions) that dwell on it.

323Thus, when one is interested solely in the topological structure of the contibdipthe afore-
described classical “reconstruction result” of the manifMdirom the algebr&C>(M) shows
precisely that the-topology of M can be recovered froiC>°(M) by Gel'fand spatialization
while the differential structure inherent friC>°(M) is not essentially involved. Similarly, at the
finitary level, we saw above how th®; revealed a rich differential geometric structure that the
purely topological finitary posets of Sorkin in (Sorkin, 1991) simply lacked. Of course, it must
be noted here that since the spectrunf¥6f°(M) can be identified (by Gel'fand duality) with
set-theoretically (i.e., by a bijective map, which moreover is a homeomorphism) one can also au-
tomatically transfer fronM to 2[*C>°(M)] the classical differential (i.eG>-smooth) structure.
But this is another issue. Notwithstanding (first author’s hunch), there might be lurking here an



Finitary, Causal, and Quantal Vacuum Einstein Gravity 1601

Allinall, and from a causal perspective, Gel'fand duality, coupled to ADG, allowed
us to “differential geometrize” and, as a result (dynamically), vary Sceki.'s
causets thus bring causet theory, whichbstiom-upapproach to quantum gravity,
closer to othetop-downapproaches, such as Ashtekaal’'s.3

5.5.2. Projective Limits of fcqv-Einstein Equations: The Power
of Differential Triads

We conclude this subsection by presenting an inverse systemf
fcqv-Einstein equations like (124), which produces the generalized classical (i.e.,
9°°-smooth) vacuum Einstein equations for Lorentzian gravity at the categori-
cal (projective) limit of infinite refinement or localization of the gausets. The
discussion below shows just how powerful the basic ADG-theoretic notion of a
differential triad is, since there is a hierarchy or “tower” of projective/inductive
systems of finitary structures which has at its basis: {‘:ﬁ }—the inverse system
of fcg-differential triads (or its direct versidi

Anticipating some comments on singularities in the next section, we also
discuss the intriguing result that th&’-smooth Einstein equations at the projective
limit hold over a “space-time” that may be infested by singularities—in other
words,the gravitational law does not “break down” at the latteince, anyway,
an fcqv-version of it appears to hold for every member of the systeand the
latter are structures reticular, “singular,” and quite remote from the featureless
smooth continuum. On the contrary, singularities may be incorporated into (or
absorbed by) the structure sheaf of ttf8-smooth differential algebras so that
the generalized differential geometric mechanism continues to hold over them and
the theory still enables one to perform calculations in their presén@dallios,

2002; Mallios and Rosinger, 1999, 2001).

Butlet us present straight away the aforesaid hierarchy of projective/inductive
families of finitary structures, commenting in particular on the projective system
£ mentioned above. The diagram below as well as the discussion that follows
it will also help us recapitulate and summarize certain facts about the plethora
of inverse and direct systems we have encountered throughout the present

appropriateepresentation theoretiat would close the circle.

324This “bottom-up” and “top-down” distinction of the approaches to quantum gravity is borrowed
from Dowker (in press). In relation to the three categories of approaches mentioned in the prologue,
category 1 may be thought of as consisting of top-down approaches, while both categories 2 and 3
as consisting of bottom-up approaches.

325|n the same way that ADG enabled us earlier to “see through” the fundamental discreteness of the
base causets and write a perfectly legitimdifeerential (Einstein) equation over them, in spite of
them.
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paper.

’ The 11-storeys’ tower of finitary inverse/direct system#

‘ Level 7: Inverse systen:% of “fully covariant” fcqv — path integrals’

I

‘ Level 6: Inverse systenE of fcqv — E — L — fields and their curvature spac‘es

|

‘ Level 5: Inverse systeng of fcqv — Einstein equation}s

|

‘ Level 4: Inverse systenf/l of (self — dual) fcqv— moduli space#

|

‘ Level 3: Inverse systerﬁ?i of (self — dual) fcqv— Einstein— Hilbert action functiona#
1 (150)
‘ Level 2 Inverse syster§[ of affine spaces of (sel dual) fcqv— dynamo%

I

‘ Level 1 Inverse syste@ of principal finsheaves and their (seffdual) fcqv— dynamo#

|

Level O: Inverse— direct systen’ﬁ' of fcq — differential triads

|

‘ Level —1: Inverse systerﬁ of finsheaves of continuous functio%s

I

‘ Level —2: Direct systenfR of incidence Rota algebras or qau%ets

1

‘ Level —3: Inverse systenp of finitary substitutes or cause{ts

Short stories about the 11 storeys
. ‘ Levels—3to —1: | The first three “underground levels” can be thought of
as assembling the fundamental one at level zero. Indeed, as explained in
section 4, each membd;, of P (now causally interpreted as a causet)
comprlses the base causal-topological space of each fcg-differential triad
T,inT bearing the same finitarity index (leveB). Correspondingly (by
Gel'fand duality), each member (qausélp of |} comprises the reticu-
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lar coordinate algebras, the bimodules of differentials over them and the
differential operators linking spaces of discrete differential forms of con-
secutive grade (level-2) that, when organized as finsheaves (levé)
over the base causets of leveB, yield the inverse-direct systeff of
fcg-differential triads of level 0.

. This is the fundamental, “ground level” of the theory in the sense
that all the inverse systems at levelsl have at their basfg, as follows.

. m The inverse systerﬁ of principal Lorentzian finsheavéd%,T of
(reticular or-thochronous spin-Lorentzian or causal symmetries of) qausets
and their nontrivial (i.e., nonflat as well as self-dual) fcqv- dynamb

can be obtained directly frortr by (sheaf-theoretically) localizing or
“gauging” qausets in the stalks of the finsheaves in the corresponding (i.e.,
of the same finitarity index) fcg- trladE € J (Mallios and Raptis, 2001).

. m The projective systerﬁ[ of affine spacesﬂ\f*) of (self-dual)
fcqv- dynamole(” on thePlTs (or better, on thé’,Ts associated with the
73iTs is can be obtained straightforwardly fr(ﬁn

. m The inverse systerﬁ?{ of (self-dual) fcqv-Einstein-Hilbert ac-
tion functionals can be easny obtained frahif we recall from (125, 126)
the finitary versmr@ﬁ ) of the ADG-theoretic definition of the E-H action
functional €$) in (65, 66)

. m Similarly to SH the inverse systerm/l of (self-dual) fcqv-
moduli spaces\/l(+) in (120) can be obtained from the inverse sysmm
memberwise, that i |s to say, by quotienting eatﬁﬁ) in 2A by the automor-
phism groupAut 5 of the causon.

. :| The projective systerg of fcqv-E-equations as in (124) is the
main one we discuss here. It can be readily obtained, again memberwise

from SH by varying eacrﬁ‘«j )in the latter collection with respect to the
(self-dual) fcqv- dynamGD,(“ in each member af, as in (the finitary ver-
sion of) (67—70). The important thing to mention here is that the inverse,
continuum, “correspondence limit” (Mallios and Raptis, 2001, in press;
Raptis and Zapatrin, 2000, 2001) of these fcqv-Eequations yields the “gen-
eralized classical” vacuum Einstein equations for Lorentzian gravity on the
9°°-smooth space-time manifoM which (i.e., whose coordinate structure
sheafdyy), prima facie, may have singularities, other general pathologies
and anomalies of all sorts. We thus infer that, by ADG-theoretic means,
we are able to write the law of gravitation over a space-time that may be
teeming with singularitiedn other words, and in characteristic contradis-
tinction to the classical*>-manifold-based general relativityye Einstein
equations do not “break down” near singularities, and the gravitational
field does not stumble or “blow up” at them. Rather, it evades them, it
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“engulfs” or “incorporates” them themn®?¢ it holds over them and, as a
result, we are able to calculate over théMallios, 2002)3?" Indeed, it has
been shown (Mallios, 2001) that with the help of ADG one can write the
gravitational vacuum Einstein equations over the most pathological, espe-
cially when viewed from th€>°-perspective, space(tim&)—one whose
structure sheaf consists of Rosinger’s differential algebras of general-
ized functions which, as noted earlier, have singularities on arbitrary closed
nowhere dense subsetsidfor even, more generally, @ibitrary sets with
dense complemengilallios and Rosinger, 1999, 2001; Rosinger, 2002).
We will briefly comment on the last two remaining pro-
jective systemsZ andz. The firstis supposed to consist of (self-dual) fcqv-
E-L

fields (‘Eﬁ, ﬁf”) and their corresponding curvature space pent&dsﬁ( =

d, €', d = d*, ©27).22 In line with footnote 61, we suppose that these
fcqv-curvature spaces and the fcqv—E-spaléesupporting them are the
“solution spaces” of the corresponding equations it the same time,

it must be noted that this “gedanken supposition'—that is, that curvature
spaces refer directly to solutions of the fcqv-E-equations—is made to fur-
ther emphasize the point made at the previous level, namely, that in case
one obtains ang!, D) (and therefore its curvatu®{”(D{M)) that is

a solution of (124), then the projectiv&?’-continuum limit of these solu-
tions may be infested by singularitidsyt still be a legitimate solution of
(i.e., satisfy) the smooth vacuum Einstein equations and the singularities
did notin any way “inhibit” the physical law or our calculations with3°

We can summarize all this with the following statement quoted almost ver-
batim from Mallios (2002)A physical law cannot be dependent on, let
alone be restricted by, singulariti€®. This may be perceived as further
support to Einstein’s doubts in Einstein (1956):

It does not seem reasonable to me to introduce into a continuum theory points
(or lines etc.) for which the field equations do not hdid.

326Thjs is so because the observable the gravitational field strengthhigwaorphism (i.e., it respects
the generalized arithmeticsA), and the generalized coordinate algebras in the structure sheaf may
include arbitrarily potent singularities.

327\We are going to comment further on this in the next section.

328Which in turn, as noted in subsection 5.1, makes the base céuaafcqv—E—space

329These solutions are, in fact, the results of our calculations in the presence of the singularities
incorporated in our own arithmetiesl

330Equivalently,Nature has no singularitiegsee next section).

331 And Einstein’s doubts are remarkable indeed if one considers that they are expressed in the context
of classical field theory on@>°-smooth space-time manifol with the unavoidable singularities
that infest its coordinate structure shé€gf.
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As for the inverse systerﬁ whose members are heuristic covariant fcqv-
path integralsZ; a la (128), our comments for its projective continuum
limit must wait for results from the ADG-theoretic treatment of func-
tional integration in gauge theories currently under developmentin Mallios
(manuscript in preparation). Our hunch is that, if the fcqv-E-H- aoﬁ@n
involved in the integrand @ af; is taken to be a functional of the self-dual
fcqv- dynamoD+ (write: @ﬁ* and,in extensoZ*) the continuum limit
should yield the generahzeﬁ’fo -version of theC*-path integral involving

the exponential of the smooth analogue of the smooth Asthekar &tipn

in (129).

6. EPILOGUE: THE WIDER PHYSICAL SIGNIFICANCE OF ADG

In this concluding section we discuss the wider physical implications of our
work here and of ADG in general. We concentrate on two aspects: on the one hand,
how ADG may potentially help us evade the notoriéds-singularities, thus we
prepare the ground for a paper that is currently in preparation (Mallios and Raptis
manuscript in preparation), and on the other, how ADG points to a “relativized”
notion of differentiability.

6.1. Towards EvadingC°°-Smooth Singularities

We commence our brief comments on smooth singularities, anticipating a
more elaborate treatment in Mallios and Raptis (manuscript in preparation), with
the following two quotations of Isham:

.. A major conceptual problem of quantum gravity isthe extent to which classical
geometrical concepts can, or should, be maintained in the quantum the@spham,
1992)

[principally becausé}?

.. The classical theory of general relativity is notorious for the existence of unavoidable
space-time singularities. (Isham, 1993)

which are completely analogous to the two quotations in the beginning of the paper.
For instance, one could combine Feynman'’s and Isham’s words in the following
way:

one cannot apply classical differential geometry in quantum gravity, because one gets
infinities and other difficulties.

Indeed, it is generally accepted that if one wishes to approach the problem
of quantum gravity by assuming up front that space-time is (modelled after) a

332Qur addition to link the two together.
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C*-smooth manifol?3 one’s theory would be plagued by singularities well before
quantization proper becomes an issue—that is, long before one had to address the
problem of actually quantizing the classical theory. In other words, the problem
of singularities is already a problem of the classical theory of gravity that appears
to halt the program of quantizing general relativity already at stage zero. Even if
one turned a blind eye to the singularities of the classical theory and proceeded
to tackle quantum general relativity as another quantum field theory based again
on the classical space-time continuum, one would soon encounter gravitational
infinities that, although milder and less robust than the singularities of the classical
theory, they are strikinglgonrenormalizab* in contradistinction to the infinities

of the quantum field theories of gauge matter which are perturbatively finite.
Altogether, it is theC>-manifold M (with its structure ringC> (M) of infinitely
differentiable functions) employed by the usual differential geometry supporting
both the classical and the quantum general relativity which is responsible for
the latter'sunavoidable space-time singularitiaead unremovable infinities, and
which makes classical (differential) geometric concepts and constructions appear
to be prima facie inapplicable in the quantum deep.

On the other hand, the word “unavoidable” in Isham’s quotation (Isham,
1993) above calls for further discussion, because it goes against the grain of the
very basic didactics of ADG vis-Vis singularities (Mallios, 2001a, 2002; Mallios
and Rosinger, 2001). It now appears clear that the singularities of general relativity
come from assuming up frodk; as the structure sheaf of “coefficients” over
which one applies the classical differential geometric constructions to classical
gravity. Since the differential pathologies are dué¥{M), the whole enterprize of
applying (differential) geometric concepts to classical and, in extenso, to quantum
gravity, seems to be doomed from the start. On the other hand, ADG has taught
us precisely thasingularities are indeed avoidable if one uses a different and
more “suitable” to the physical problem at issue structure arithmefiahanCyy
(Mallios, 1998b, 2001a, 2002; Mallios and Rosinger, 2001). Moreover, ADG has
time and again shown that the “intrinsic mechanism” of the classical differential
geometry Ax = CY°)) can be carried over, intact, to a generalized differential
geometric setting afforded by a general structure sheadry different fromCgy
(Mallios, 2001a; Mallios and Raptis, in press; Mallios and Rosinger, 1999, 2001).
SinceA can be taken to include arbitrary singularities, even of the most extreme
and classically unmanageable sort (Mallios and Rosinger, 1999, 2001; Rosinger,
2002), it follows thathe said differential mechanism is genuinely independent of
singularities That is to say,

not only we can avoid singularities ADG-theoretically, but we can actually absorb or

“engulf” theminto A (provided of course these algebras are “appropriate” or “suitable”
for serving as the structure arithmetics of the abstract differential geometry that has

333gych an approach would belong to the “calculus conservative” catégeeptioned in the prologue.
334Essentially due to the dimensionfulness of Newton's gravitational constant.
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been developed$® and, as a result, calculate or perform our (differential geometric)
constructions over them, in spite of their presence which thus becomes unproblematic
(Mallios, 2002)336

These remarks bring to mind Einstein’s “apologetic confession”

... Adhering to the continuum originates with me notin a prejudice, but arises out of the
fact that | have been unable to think up anything organic to take its pla¢ginstein,
1949),

in the sense that Einstein’s commitment to the continuum and, in effect, to the
classical differential geometry supporting his theory of gravitation, would not
have been as strong or as faitliftilhad there been an alternative (mathemat-
ical) scheme—perhaps one of a strong algebraic character if one considers his
life-long quest (in view of quantum theory and the pathologies of the continuum)
for an entirely algebraic description of reali§—that worked as well as th&>-
differential geometry, yet, unlike the latter, was more algebraic, not dependenton a
dynamically inactive space-time continuum and, perhaps more importantly, it was
not assailed by singularities, infinities, and other “differential geometric diseases”
coming from the a priori assumption of the smooth background marifoMle
contend that ADG is a candidate for the algebraic theory that Einstein had envi-
sioned, for, as we saw here and in a series of papers (Mallios and Raptis, 2001,
in press; Mallios and Rosinger, 1999, 2001), one can carry out all the differential
geometric constructions that are of use in the usual differential geometry support-
ing general relativity with the help of suitable vector and algebra sheaves over
arbitrary base spaces—even over ones that are extremely singular and reticular
when viewed from the perspective of the smooth continuum. Thus, in effect,

335That is to say, they can provide us with the basis for defining differentials, connections, vectors,
forms, and higher orde®a-tensors, as well as the rest of the “differential geometric apparatus” in
much the same way th&fy does, supported by the smooth manifddd in the classical theory.

338|n a straightforward way, ADG shows that singularities can be integrated into the structure algebra
sheafA of our own “generalized measurements,” “arithmetics,” or “coefficients,” thus they should
never be regarded as problems of Physis. In other wdtdjre has no singularities, rather, it is
our own models of Her that are of limited applicability and validigyg., in the classical case this
pertains to theZ°>°-smooth manifold modeM for space-time, the structure shefat= Cyy that it
supports, and thé>-singularities that the latter hosts).

337which we encountered earlier in subsection 5.4.1. We too apologize for displaying this quotation
twice, but we find it very suggestive and relevant to one of the main points that we make in the present
paper, namely, thattEinstein had a wayji.e., a theory and a working methaaf)doing field theory—
and differential geometry in general—independently of the pathological and unphysical space-time
continuum, and, moreover, by finitistic—algebraic means (in view of the quantum paradigm), he
would readily abandon thé>°-smooth manifoldsee more remarks shortly). We claim that ADG,
especially in its finitary guise here, is such a theory.

338Quite remarkably though, considering that general relativity enjoyed numerous successes and was
experimentally confirmed during Einstein’s life.

3395ee the three quotations in subsection 5.1.1.

340|n these terms we may understand the epitiiganicabove.
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according to ADG (the intrinsic or inherent mechanism of), differential geometry has
nothing to do with the background space so that, in particular, it is not affected by the
singularities of the manifold (Mallios, 2002).

For the sake of completeness, we bring to the attention of the reader two
examples from the physics literature, one old the other new, of theories that evade
singularities in a way that accords with the general spirit of ADG described above.

e Evading the exterior Schwarzschild singularity (ol@he paradigm that
illustrates best how a change in the coordinate structure functions or gen-
eralized arithmeticé may effectively resolve a singularity is Finkelstein’s
early work on the gravitational field of a point particle (Finkelstein, 1958).

It was well known back then that the Schwarzschild solution of the Einstein
equations for the gravitational field of a point maskad two singularities:
an exterior one, at distance (radiusy 2 m from m, and an interior right at
the point mass(= 0). What Finkelstein was able to show is that by an ap-
propriate change of coordinat¢s—the so-called Eddington—Finkelstein
frame, the exterior singularity is “transformed away” revealing that the
Schwarzschild space-time acts as a unidirectional, “semipermeable,” time-
asymmetric membrane allowing the outward propagation of particles and
forbidding the inward flux of antiparticles. For this, the- 2 m singularity
was coineccoordinate singularityand was regarded as being onlyvar-
tual” anomaly—merely an indication that we had laid down inappropriate
coordinates to chart the gravitational space-time manifold.

On the other hand, it was also realized that the interior singularity
could not be gotten rid of by a similar coordinate chaff@ehus it was
held as being artal” or “true”’ singularity—an alarming indication that
general relativity is out of its depth when trying to calculate the gravitational
field right on its point source. Thus, ever since Finkelstein’s result, it has
been hoped that only a genuine quantum theory of gravity will be able
to deal with the gravitational field right at its source much in the same
way that the quantum theoresis of electrodynamics (QED) managed, even
with just the theoretically rather ad hoc method of “subtracting infinities”
(renormalization¥® to do meaningful physics about the photon radiation
field at its source—the electron.

According to this rationale however, notwithstanding the perturba-
tive nonrenormalizability of gravity due to the dimensionality of Newton’s

341However, always in the context of a smooth space-time manifo(ide. , still with the new coordinate
functions being members &f = Cyy).

342 pgain though, still by remaining within thé>-smooth manifold model.

3431t is well known, for instance, that Dirac expressed many times his dissatisfaction about the renor-
malization program with its mathematically not well-founded and aesthetically unpleasing recipes:
Sensible mathematics involves neglecting a quantity when it turns out to be small—not neglecting
it just because it is infinitely great and you do not war(fitrac, 1978).



Finitary, Causal, and Quantal Vacuum Einstein Gravity 1609

constant, it has become obvious that physicists have devotedly committed
themselves so far to viewing the space-time point manifold as something
physically “real” in the sense that any of its points is regarded as poten-
tially being the host of a noncircumventabledy-means singularity for a
physically important smooth field. That is, instead of reading Finkelstein’s
result in a positive way, as for instance in the following maraker ADG,

when encountering any singularity, in order to “resolve” it and be able to
cope with (i.e., calculate over) it, one must look for an “appropriate” structure
algebra of coordinates that incorporates or “engulfs” it (Mallios, 2002) and
then one has to give a cogent physical interpretation of the new piétire,

physicists try instead to retain as much as they can (admittedly, by ingenious
methods at times) the differential space-time manifdidts structure co-
ordinatesA = Cy; and its structure symmetrigs = Diff( M) as if they
were physically real, and at the same time quite falsely infer that the mech-
anism of (classical) differential geometry does not apply over singularities
and, in extenso, in the quantum déépAll in all, it is as if

1. The smooth space-time manifold is a physically real substance
to be retained by all means.

2. The(C®-singularities are also physically real as they are Na-
ture’s (i.e., the space-time manifold’s) own diseases—they are
real physical problems, “intrinsic” pathologies of Nature (space-
time).

3. The (classical) differential calculus and the dynamical laws (e.g.,
the Einstein equations) supported by it break down at a singularity.

4. To retain the space-time manifold so that one can continue do-
ing calculus (i.e., apply the usual differential geometric ideas
and techniques to physical situations—as it were, “continue the
validity of physical laws” and, in factcalculatg, singulari-
ties must be isolated and then somehow removed or “surgically

344The word “appropriate” meaning here in the manner of ADG: a (differential) algebra of coordinates
that integrates the singularity (as a generalized coefficient) yet it is still able to provide us with
the basic differential mechanism we need to set up the relevant dynamical equations over it and
calculate with them.

345guch an attitude was coined in Mallios and Raptis (in pre€$)-smooth manifold conservative
and it is the spirit underlying category 1 of approaches to quantum gravity mentioned in the Pro-
logue. For instance, physicists try to isolate and surgically cut out of the space-time manifold the
offensive singular points, thus continue the ugifatdifferential geometric practices in the remain-
ing “effective manifold.” (In a sense, they “artificially” remove, by hand and force as it were, the
“points, lines etc. for which the field equations do not ti@d we read in Einstein’s quotation at the
end of the last section.) Current physics regards singularities as an incurable disease of differential
geometry. In contradistinction, ADG maintains that they are unmanageable ind€gg-tmeans,
but also, more importantly, that the (algebraic in nature) differential mechanism is not affected by
them, so that one should be able to continue “calculating” in their presence.



1610

Mallios and Raptis

excised” from the manifold, leaving back an effective space-time
manifold free of pathologies.
At the same time, a natural follow-up of this line of thought is the follow-
ing basic hunch shared nowadays by almost all the workers in the field
of quantum gravity (string theorists aside) looking for alternatives to the
space-time continuum of macroscopic phystés,

at strong gravitational fields near singularities, or at Planck distances, the
conventional image of space-time as a smooth continuum breaks down and
should somehow give way to something “discrete,” “reticular,” “inherently cut-
off,” and this should be accompanied by a radical modification of the classical
differential geometry used to describe classical, “low energy” Einstein gravity
on M. At the core of this philosophy hibernates the idea that the notion of
space-time—be it discrete or continuous—must be retained at any cost, and
that our methods of calculation must be modified accordingly, as if all our
constructions must be tailor-cut to suit (or better, derive from) a pre-existent
background geometrical space (tin?éj.

Passing through the initial singularity by ekpyrosis (nevggether with the
interior Schwarzschild singularity, there is another one, perhaps even more
famous, which is a direct consequence of Einstein’s general theory of rela-
tivity, namely, thanitial Big Bang singularitymarking the beginning of an
expanding Universe in the most successful of modern cosmological mod-
els. The initial singularity, like the aforementioned interior Schwarzschild
one, isregarded as afundamental, “true” space-time singularity and physics
during the Planck epoch (0-1fFs) is anticipated to be described consis-
tently by the ever elusive quantum theory of gravity. However, recently, in
the context of the string, membrane aldtheory approach to quantum
gravity, Khouryet al. have proposed a scenario according to which one
can actually evade the initial singularity—as it were, do meaningful pre-
Big Bang era physics (Khourgt al., 2001, 2002; Steinhardt and Turok,
2002). Without going into any technical details, we just note that their pro-
posal basically involves a (coordinate) field transformattércompletely
analogous to Finkelstein's frame change in (Finkelstein, 1988yhich
enables one to go through the initial singularity as if it was a diaphanous
membrane. Thus, even the most robust and least doubted singularity of all,

346Tg name a few alternative schemes to the space-time continuum and to the classical theory of gravity
that it supports simplicial (Regge) gravity, spin-networks, causet theory, etc.

347|n spite of Einstein’s serious doubts about the physical meaningfulness of the concepts of space and
time mentioned earlier. Even more remarkably, in subsection 4.2.2 we mentioned how Isham has
contemplated changing drastically the standard quantum theory itself to suit noncontinua space-time
backgrounds, such as causal sets for example.

348giill assuming howeveE>-smoothness for the various fields involved (i%.= C in our lan-
guage; whereX is a higher dimensional differential manifold, e.g., a Riemann hypersurface).

349Neil Turok in private communication (Turok, 2001).
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the Big Bang, has been shown (again, simply by the uggeimeans!) to
be no problem, no pathology of Nature at all, and that a rich physics is to
be discovered even for the period “before time began.”

6.2. The Relativity of Differentiability

In connection with our brief remarks @i¥°-singularities above, we close the
present paper with further remarks on the opening two quotations of Feynman and
Isham. In particular, in line with the discussion of “gravity as a gauge theory” in
section 3, we would like to emphasize that,

1. while we share Feynman’s scepticism about the metric-formulation of gen-
eral relativity?® and his hunch that there is a fundamental gauge invariance
lurking there,

2. we do not share his apparently “negative” stance towards differential ge-
ometry. Of course, his position is understandable to the extent that he is
referring to (and he is actually referring to!) the usual calculu£dn
manifolds, but this is precisely the point of ADG:

one should not question the “differential mechanism” per se when encoun-
tering singularities, infinities and other pathologies in classical differential
geometryFor, loosely speakingthe mechanism is fine,” as it works, that is,

as one can actually do differential geometry in principle over any space, no
matter how singular. Rather, one should questiondffesmooth manifold

M itself whose only operative role in the said “differential mechanism” is
to provide us with the algebras (by no means unique or “preferred” in any
sensé®l) ¢°(M) of infinitely differentiable functions (and the classical dif-
ferential geometric mechanism supported by thetmizh, in turn are the very
hosts of the aforementioned singularities and the other “classical differential
geometric diseases.”

Since Feynman’s stance appears to accord with Ish&mayr reply to
the latter is similar; expressed somewhat differently.

3. we seem to be misled by the classical theory—¢ie-differential
geometry—into thinking that the various “differential geometric

350After all, the metric, as well as the space hosting it, are our own ascriptions to Physis; they are not
Nature’s own(recall Einstein’s quotation (Einstein, 1949) in subsection 5.1.1). ADG emphasizes
that theA-metric p, as the term suggests, is crucially dependent on our own measurements or
“generalized arithmetics” i\, so that, like the singularities of the previous subsection, it is not
Nature’s own propertywe ascribe it to Her{see footnote 20). This is in line with quantum theory’s
basic algebraico—operationalist philosophy (and goes against the Platonic realist ideal of classical
physics) according to whiclguantum systems do not possess physical properties of their own, that
is, independently of our acts of observing them. These acts, in turn, can be suitably organized into
algebras of physical operations, generalized “measurements” so to speak, on the quantum system

3515ee theprinciple of relativity of differentiabilityto follow shortly.

3525ee the two quotations opening the paper.
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pathologies” are faults and shortcomings of thterential mechanism,
thus also infer that differential geometry does not apply in the quantum
deep As noted earlier, it is perhaps habit or long-time familiarity with
smooth manifolds and their numerous successful applications to physics,
including general relativity and the quantum field theories of matter, that
makes us think s&? for ADG has shown us thahe differential mecha-
nism still applies effectively over any space—even over ones that are much
more singular (in a very straightforward, but technical, sen@éallios
and Rosinger, 1999, 2001; Rosinger, 20a#*)even over ones that are
manifestly discontinuous and more quar(tdillios and Raptis, 2001, in
press)than the “featureless” differential manifoldOn the other hand,
ADG has also shown us that the “differential diseases” are exactly due to
our assuming up front a differential manifold background space to sup-
port our differential geometric constructions, thus agreeing in that sense
with Feynman and Ishan. However, in contradistinction to thewiew of
ADG, one does not need the differential manifold in order to differentiate

Allin all, ADG suggests thatio heal the differential pathologies, one
must first kick th&€>°-smooth manifold hahit

Thus, continuing the “sloganeering” with which we concluded
(Mallios and Raptis, 2002 and expressed slogans 1-3 in the present
paper, we may distill the remarks above to the followimgldtivity of
differentiability’ principle.

. The differential space-time manifold by no means sets a prefeired (

unique) frame i(e., model) for differentiating physical quantities. Dif-
ferential equations, modelling physical laws that obey the generalized
principle of locality®>> can be also set up independently of the-
smooth manifold—in fact, as we saw in this paper, regardless of any back-
ground (base) space (tim&ince we have repeatedly argued and witnessed
in this paper thatifferentiability derives from the stalid.e., from the

3535ee quotation of Einstein concluding the paper below. At this point, to give an indication of this
attitude—i.e., of the persistent, almost “religious” adherence of some physicists to the space-time
manifold—we may recall Hawking’s opening words in Hawking and Penrose (1996) where he
discusses singularities in general relativity &is4$ quantum gravity:. . Although there have been
suggestions that space-time may have a discrete structure, | see no reason to abandon the continuum
theories that have been so successful. General relativity is a beautiful theory that agrees with every
observation that has been made. It may require modifications on the Planck scale, but | don't think
that will affect many of the predictions that can be obtained from.ifThis appears to be the
manifold-conservativetance against singularities and quantum gravity par excellence.

354Especially, see slogan 2 there.

355Which maintains that physical laws should be modelled after differential equations that depict

the cause-and-effect nexus between “infinitesimally” or “smoothly separat€e-¢ontiguous”)
events—arguably what one understands by “differential locality” (i.e., local causality i@°the
smooth space-time manifold) (Mallios and Raptis, 2001; Raptis and Zapatrin, 2001).
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algebraic objects dwelling in the relevant sheaves) motdrom the un-
derlying space(timg)we may say that the “absolute” and fixed differ-
entiability of the smooth space-time manifold, which for Einstein rep-
resented the last relic of an inert, “dynamically indifferent” ether-like
substance (Einstein, 1983b, 1991) thatts, but is not acted updKEin-
stein, 1956} “relativized with respect to the algebraic objects that live
on whatever “space-tim&” we have used as a base space “scaffolding” to
localize sheaf-theoretically those physically significant algebraic objects.
We may figuratively refer to the abstract algebraico—sheaf-theoretic dif-
ferentiability properties (of the system “quantum space-time”—or better,
of the very dynamical quanta in which that “space-time” is inherent) as
“differentiableg’ in analogy to the standard algebraically represented “ob-
servables” or even the “beables” of the usual (material) quantum physical
systems. Thus, to wrap things up,

“Differentiables” are properties of (i.e., derive from) the algebraic structure of
the objects (sections of algebra sheaves) that live on “space (time),” not from
“space (time)” itself which, especially in its classi€®-smooth manifold
guise, is doubtful whether it has any physical significance at all (Butterfield
and Isham, 2000; Isham, 1992, 1993, 2002; Mallios, 2002; Mallios and Raptis,
2001, in press; Raptis and Zapatrin, 2000, 2001).

356More precisely, Einstein's doubts about the physical reality of the absolute, dynamically passive
space-time continuum of the (special) theory of relativity were expressed in (Einstein, 1956) (p. 55)
as follows: “ . . In this latter statemerft.e., that from the standpoint of special relativitgntinuum

spatii ettemporis est absolutabsolutum means not only ‘physically real, but also ‘independent of

its physical properties, having a physical effect, but not itself influenced by physical coriditidhs
Indeed so, in the special theory of relativity the metrical properties of the space-time continuum
were not relativized, so that the metric was not regarded as a dynamical variable. The general theory
of relativity viewed the metric—"the field of locality” (local causality or local chronology)—as a
dynamical variable and effectively evaded the aforesaidporis est absolutunbut it must again

be emphasized here that general relativity in a sense came short of fully relativizing (i.e., regarding
as dynamical variables) the whole panoply of structures (or “properties” in Einstein’s words above)
that the space-time continuum comes equipped with. For instance, the continuum’s structures which
are arguably “deeper” than the metrical, such as the topological and the differential, are simply left
absolute, nonrelativized (nondynamical), “fixed by the theorist once and forever as the differential
manifold background.” As noted repeatedly earlier and in previous works (Mallios and Raptis,
2001, in press; Raptis and Zapatrin, 2000, 2001), in a genuinely (fully) guantum theoresis of space-
time structure and dynamics even the topological and the differential structures are expected to be
subjected to relativization and dynamical variability—tthessome “observables,” “in principle
measurable” dynamical entitiegor it has been extensively argued ttie& common denominator

of both relativity (relativization) and the quantum (quantization) is dynamics (dynamical variation)
(Finkelstein, 1996). So thaatl is quantuni (see footnote 6) means essentially thiits dynamical
Butthen, if everything is in constant flux in the quantum dedpence spaceand mutatis mutandis
whence time?Totally, is there any space-time at ajland even more doubtfullyhence the space-

time manifold?

357The inverted commas over “space-time” remind one of the physically dubious (especially at Planck

scale) significance of this concept.
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However, since we have repeatedly quoted above Einstein’s doubts about
the smooth geometric space-time continuumasgs singularities and the
quantum, we would like to end the paper with another telling quotation
of his which sensitizes us to the fact that successful, therefore a priori
assumed and habitually or uncritically applied, theoretical concepts and
mathematical structuré® can exercize so much power on us that they of-
ten mask their true origin and pragmatic usefulness—i.e.hiegtsimply

are our own theoretical constructs of limited applicability and valigity

and mislead us into thinking that they are “unavoidable necessities” and,
what's worse, Nature’s own traits:

... Concepts which have proved useful for ordering things easily assume so
greatan authority over us, that we forget their terrestrial origin and accept them
as unalterable facts. They then become labelled as “conceptual necessities,”
“a priori situations,” etc. The road of scientific progress is frequently blocked
for long periods by such errors. Itis therefore not just an idle game to exercise
our ability to analyse familiar concepts, and to demonstrate the conditions on
which their justification and usefulness depend, and the way in which these
developed, little by little. . (1916) (Einstein, 1990)
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