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We continue recent work (Mallios and Raptis,International Journal of Theoretical
Physics40, 1885, 2001; in press) and formulate the gravitational vacuum Einstein equa-
tions over a locally finite space-time by using the basic axiomatics, techniques, ideas,
and working philosophy of Abstract Differential Geometry. The main kinematical struc-
ture involved, originally introduced and explored in (Mallios and Raptis,International
Journal of Theoretical Physics40, 1885, 2001), is a curved principal finitary space-
time sheaf of incidence algebras, which have been interpreted as quantum causal sets,
together with a nontrivial locally finite spin-Loretzian connection on it which lays the
structural foundation for the formulation of a covariant dynamics of quantum causality
in terms of sheaf morphisms. Our scheme is innately algebraic and it supports a cate-
gorical version of the principle of general covariance that is manifestly independent of
a backgroundC∞-smooth space-time manifoldM . Thus, we entertain the possibility
of developing a “fully covariant” path integral-type of quantum dynamical scenario for
these connections that avoids ab initio various problems that such a dynamics encoun-
ters in other current quantization schemes for gravity—either canonical (Hamiltonian)
or covariant (Lagrangian)—involving an external, base differential space-time mani-
fold, namely, the choice of a diffeomorphism-invariant measure on the moduli space of
gauge-equivalent (self-dual) gravitational spin-Lorentzian connections and the (Hilbert
space) inner product that could in principle be constructed relative to that measure in
the quantum theory—the so-called “inner product problem,” as well as the “problem
of time” that also involves the Diff(M) “structure group” of the classicalC∞-smooth
space-time continuum of general relativity. Hence, by using the inherently algebraico–
sheaf–theoretic and calculus-free ideas of Abstract Differential Geometry, we are able
to draw preliminary, albeit suggestive, connections between certain nonperturbative
(canonical or covariant) approaches to quantum general relativity (e.g., Ashtekar’s new
variables and the loop formalism that has been developed along with them) and Sorkin
et al.’s causal set program. As it were, we “noncommutatively algebraize,” “differential
geometrize” and, as a result, dynamically vary causal sets. At the end, we anticipate
various consequences that such a scenario for a locally finite, causal and quantal vacuum
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Einstein gravity might have for the obstinate (from the viewpoint of the smooth contin-
uum) problem ofC∞-smooth space-time singularities.

KEY WORDS: quantum gravity; causal sets; differential incidence algebras of lo-
cally finite partially ordered sets; abstract differential geometry; sheaf theory; sheaf
cohomology; category theory.

. . . the theory that space is continuous is wrong, because we get. . .

infinities[viz. “singularities”]and other similar difficulties. . . [while]
the simple ideas of geometry, extended down to infinitely small, are
wrong. . .”

—Feynman (1992)

. . .at the Planck-length scale, classical differential geometry is
simply incompatible with quantum theory. . . [so that] one will not
be able to use differential geometry in the true quantum-gravity
theory. . .”

—Isham (1991)

1. PROLOGUE CUM PHYSICAL MOTIVATION

In the last century, the path that we have followed to unite quantum mechanics
with general relativity into a coherent, both technically and conceptually, quantum
theory of gravity has been a long and arduous one, full of unexpected twists and
turns, surprising detours, branchings, and loops—even disheartening setbacks and
impasses, as well as hopes, disappointments, or even disillusionments at times.
Certainly though, the whole enterprize has been supported and nurtured by im-
pressive technical ingenuity, and creative imagination coming from physicists and
mathematicians alike. All in all, it has been a trip of adventure, discovery, and in-
tellectual reward for all who have been privileged to be involved in this formidable
quest. Arguably then, the attempt to arrive at a conceptually sound and “calcula-
tionally” finite quantum gravity must be regarded and hailed as one of the most
challenging and inspired endeavors in theoretical physics research that must be
carried over and be zestfully continued in the new millenium.

Admittedly, however, a cogent theoretical scenario for quantum gravity has
proved to be stubbornly elusive not least because there is no unanimous agreement
about what ought to qualify as the “proper” approach to a quantum theoresis of
space-time and gravity. Generally speaking, most of the approaches fall into the
following three categories4 :

4 These categories should by no means be regarded as being mutually exclusive or exhaustive, and
they certainly reflect only these authors” subjective criteria and personal perspective on the general
characteristics of various approaches to quantum gravity. This coarse classification will be useful for
the informal description of our finitary and causal approach to Lorentzian vacuum quantum gravity
to be discussed shortly.
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1. General relativity conservative: The general aim of the approaches falling
into this category is to quantize classical gravity somehow. Thus, the
mathematical theory on which general relativity—in fact, any field theory
whether classical or quantum—is based, namely, the differential geom-
etry of C∞-manifolds (i.e., the usual differential calculus on manifolds)
is essentially retained5 and it is used to treat the gravitational field quan-
tum field theoretically. Both the nonperturbative canonical and covariant
(i.e., path integral or “action-weighed sum-over-histories”) approaches
to “quantum general relativity,” topological quantum field theories, as
well as, to a large extent, higher dimensional (or extended objects’) the-
ories like (super) string and membrane schemes arguably belong to this
category.

2. Quantum mechanics conservative: The general spirit here is to start from
general quantum principles such as algebraic operationality, noncommu-
tativity, and finitism (“discreteness”) about the structure of space-time
and its dynamics, and then try to derive somehow general relativistic at-
tributes, as it were, from within the quantum framework. Such approaches
assume up-front that quantum theory is primary and fundamental, while
the classical geometrical smooth space-time continuum and its dynamics
secondary and derivative (emergent) from the deeper quantum dynamical
realm. For instance, Connes’ noncommutative geometry (Connes, 1994;
Kastler, 1986) and, perhaps more notably, Finkelstein’s quantum relativity
(Finkelstein, 1996; Selesnick, 1998)6 may be classified here.

3. Independent: Approaches in this category assume neither quantum me-
chanics nor general relativity as a fundamental, “fixed” background the-
ory relative to which the other must be modified to suit. Rather, they start
independently from principles that are neither quantum mechanical nor
general relativistic per se, and proceed to construct a theory and a suitable
mathematical formalism to accompany it that later may be interpreted as
a coherent amalgamation (or perhaps even extension) of both. It is in-
evitable with such “iconoclastic” schemes that in the end both general
relativity and quantum mechanics may appear to be modified to some
extent. One could assign to this category Penrose’s combinatorial spin
networks (Penrose, 1971; Rovelli and Smolin, 1995) and its current rel-
ativistic spin-foam descendants (Baez, 1998; Barrett and Crane, 2000;
Perez and Rovelli, 2001), Regge’s homological space-time triangulations
and simplicial gravity (Regge, 1961), as well as Sorkinet al.’s causal sets

5 That is, in general relativity space-time is modelled after aC∞-smooth manifold. Purely mathemat-
ically speaking, approaches in this category could also be called “C∞-smoothness or differential
manifold conservative.”

6 In fact, Finkelstein maintains that “all is quantum. Anything that appears to be classical has not yet
been resolved into its quantum elements” (David Finkelstein, private communication).
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(Bombelli et al., 1987; Rideout and Sorkin, 2000; Sorkin, 1995, 1997,
manuscript in preparation).

It goes without saying that this is no place for us to review in any detail the ap-
proaches mentioned above.7 Rather, we wish to continue a finitary, causal, and
quantal sheaf–theoretic approach to space-time and vacuum Lorentzian gravity
that we have already started to develop in (Mallios and Raptis, 2001, in press).
This approach, as we will argue subsequently, combines characteristics from all
three categories above and, in particular, the mathematical backbone which sup-
ports it,Abstract Differential Geometry(ADG) (Mallios, 1998a,b; 2001a, 2002,
manuscript in preparation), was originally conceived to evade theC∞-smooth
space-time manifoldM (and consequently its diffeomorphism group Diff(M)) un-
derlying (and creating numerous problems for) the various approaches in 1. For, it
must be emphasized up-front,ADG is an axiomatic formulation of differential ge-
ometry which does not use anyC∞-notion from the usual differential calculus—the
classical differential geometry of smooth manifolds.

To summarize briefly what we have already accomplished in this direction,8

in Mallios and Raptis (2001) we combined ideas from the second author’s work
on finitary space-time sheaves9 (finsheaves) (Raptis, 2000b) and on an algebraic
quantization scenario for Sorkin’s causal sets (causets) (Raptis, 2000a) with the
first author’s ADG (Mallios, 1998a,b), and we arrived at a locally finite, causal,
and quantal version of the kinematical structure of Lorentzian gravity. The lat-
ter pertains to the definition of a curved principal finsheafEP↑i of incidence Rota
algebras modellingquantum causal sets(qausets) (Raptis, 2000a), having for struc-
ture group a locally finite version of the continuous orthochronous Lorentz group
SO(1, 3)↑ of local symmetries (isometries) of general relativity, together with a
nontrivial (i.e., nonflat) locally finiteso(1, 3)↑i ' sl(2,C)i -valued spin-Lorentzian
connection EDi

10 which represents the localization or gauging and concomitant

7 For reviews of and different perspectives on the main approaches to quantum gravity, the reader
is referred to (Isham, 1993; Ashtekar, 1994; Rovelli, 2001). In the last, most recent reference, one
notices a similar partition of the various approaches to quantum gravity into three classes called
covariant, canonical, and sum-over-histories. Then one realizes that presently we assigned all these
three classes to category 1, since our general classification criterion is which approaches, like general
relativity, more-or-less preserve aC∞-smooth base space-time manifold hence use the methods of
the usual differential geometry on it, and which do not. Also, by “covariant” we do not mean what
Rovelli does. “Covariant” for us is synonymous to “action-weighed sum-over-histories” or “path
integral.” Undoubtedly, there is arbitrariness and subjectivity in such denominations, so that the
boundaries of those distinctions are rather fuzzy.

8 For a recent, concise review of our work so far on this sheaf–theoretic approach to discrete Lorentzian
quantum gravity, as well as on its possible topos-theoretic extension, the reader is referred to Raptis
(2002). In particular, the topos-theoretic viewpoint is currently being elaborated in Raptis (manuscript
in preparation).

9 Throughout this paper, the epithets “finitary” and “locally finite” will be used interchangeably.
10From Mallios and Raptis (2001) we note that only the gauge potentialEAi part of the reticular
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dynamical variability of the qausets in the sheaf due to a finitary, causal. and quan-
tal version of Lorentzian gravity in the absence of matter (i.e., vacuum Einstein
gravity). We also gave the following quantum particle interpretation to this reticu-
lar scheme: a so-calledcauson—the elementary particle of the field of dynamical
quantum causality represented byEAi —was envisioned to dynamically propagate
in the reticular curved space-time vacuum represented by the finsheaf of qausets
under the influence of finitary Lorentzian (vacuum) quantum gravity.

In the sequel (Mallios and Raptis, in press), by using the universal con-
structions and the powerful sheaf-cohomological tools of ADG together with the
rich differential structure with which the incidence algebras modelling qausets
are equipped (Raptis, 2000a; Raptis and Zapatrin, 2000, 2001; Zapatrin, 1996,
in press), we showed how basic differential geometric ideas and results usually
thought of as being vitally dependent onC∞-smooth manifolds for their real-
ization, as for example the standard Cech-de Rham cohomology, carry through
virtually unaltered to the finitary regime of the curved finsheaves of qausets. For
instance, we gave finitary versions of importantC∞-theorems such as de Rham’s,
Weil’s integrality, and the Chern-Weil theorem and, on the basis of certain robust
results from the application of ADG to the theory of geometric (pre)quantization
(Mallios, 1998b, 1999, 2001b), we carried out a sheaf-cohomological classifica-
tion of the associated line sheaves bearing the finitary spin-LorentzianEAi s whose
quanta were referred to as causons above—the elementary (bosonic) particles car-
rying the dynamical field of quantum causality whose (local) states correspond
precisely to (local) sections of those line sheaves. By this virtually complete tran-
scription of the basicC∞-constructions, concepts, and results to the locally finite
and quantal realm of the curved finsheaves of qausets, we highlighted that for their
formulation the classical smooth background space-time continuum is essentially
of no contributing value. Moreover, we argued that since theC∞-smooth space-
time manifold can be regarded as the main culprit for the singularities that plague
general relativity as well as for the weaker but still troublesome infinities that assail
the flat quantum field theories of matter, its evasion—especially by the finitistic–
algebraic means that we employed—should be most welcome for the formulation
of a “calculationally” and, in a sense to be explained later, “inherently finite” and
“fully covariant” quantum theory of gravity.

With respect to the aforementioned three categories of approaches to quan-
tum gravity, our scheme certainly has attributes of 2 as it employs finite dimen-
sional nonabelian incidence algebras to model (dynamically variable) qausets in

EDi = E∂ + EAi is spin-Lorentzian proper (i.e., discreteso(1, 3)↑i ' sl(2,C)i -valued), but here too we

will abuse terminology and refer to eitherEDi or its part EAi as “the spin-Lorentzian connection.”
(The reader should also note that the arrows over the various symbols will be justified in the sequel
in view of the causal interpretation that our incidence algebra finsheaves have; while the subscript
“ i ” is the so-called “finitarity,” “resolution,” or “localization index” (Mallios and Raptis, 2001, in
press; Raptis, 2000b), which we will also explain in the sequel.)
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the stalks of the relevant finsheaves, which qausets have a rather natural quantum-
theoretic (because algebraico–operational) physical interpretation (Mallios and
Raptis, 2001; Raptis, 2000a; Raptis and Zapatrin, 2000, 2001). It also has traits of
category 3 since the incidence algebras are, by definition, of combinatorial and “di-
rected simplicial” homological character and, in particular, Sorkin’s causet theory
was in effect its principal physical motivation (Mallios and Raptis, in press; Raptis,
2000a). Finally, regarding category 1, the purely mathematical, ADG-based aspect
of our approach was originally motivated by a need to show thatall the “intrin-
sic” differential mechanism of the usual calculus on manifolds is independent of
C∞-smoothness, in fact, of any notion of “space” supporting the usual differential
geometric concepts and constructions,11 thus entirely avoid, or better, manage to
integrate or “absorb” into the (now generalized) abstract differential geometry, the
“anomalies” (i.e., the singularities and other “infinity-related pathologies”) that
plague the classicalC∞-smooth continuum case (Mallios, 1998, 2002). Arguably
then, our approach is an amalgamation of elements from 1–3.

Let us now move on to specifics. In the present paper we continue our work in
Mallios and Raptis (2001, in press) and formulate the dynamical vacuum Einstein
equations inEP↑i . On the one hand, this extends our work on the kinematics of a
finitary and causal scheme for Lorentzian quantum gravity developed in Mallios
and Raptis (2001) as it provides a suitable dynamics for it, and on the other, it
may be regarded as another concrete physical application of ADG to the locally
finite, causal, and quantum regime, and all thisin spite of theC∞-smooth space-
time manifold, in accord with the spirit of Mallios and Raptis (in press). Our work
here is the second physical application of ADG to vacuum Einstein gravity, the
first having already involved the successful formulation of the vacuum Einstein
equations over spaces with singularities concentrated on arbitrary closed nowhere
dense sets—arguably,themost singular spaces when viewed from the featureless
C∞-smooth space-time manifold perspective (Mallios, 2001a, 2002; Mallios and
Rosinger, 1999, 2001; Rosinger, in press).
11Thus, as we will time and again stress in the sequel, with the development of ADG we have come to

realize that the main operative role of theC∞-smooth manifold is to provide us witha convenient
(and quite successful in various applications to both classical and quantum physics),but by no means
unique, differential mechanism, namely, that accommodated by the algebraC∞(M) of infinitely
differentiable functions “coordinatizing” the (points of the) differential manifoldM . However, the
latter algebra’s pathologies in the form of singularities made us ponder on the question whether the
differential mechanism itself is “innate” toC∞(M) and the manifold supporting these “generalized
arithmetics” (this term is borrowed straight from ADG). As alluded to above, ADG’s answer to the
latter is an emphatic “No” (Mallios, 1998a,b, 2002). For example, one can do differential geometry
over very (in fact,the most) singular from the point of view of theC∞-smoothM spaces and their
“arithmetic algebras,” such as Rosinger’s non-linear distributions—the so-called differential algebras
of generalized functions) (Mallios and Rosinger, 1999, 2001; Rosinger, in press). As a matter of fact,
the last two papers, together with the duet (Mallios and Raptis, 2001, in press), are examples of
two successful applications of ADG proving its main point that “differentiability is independent of
C∞-smoothness” (see slogan 2 at the end of Mallios and Raptis (in press)).
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The paper is organized as follows. In the following section we recall the basic
ideas about connections in ADG focusing our attention mainly on Yang–Mills (Y-
M) and Lorentzian connections on finite dimensional vector sheaves, on principal
sheaves (whose associated sheaves are the aforementioned vector sheaves), their
curvatures, symmetries, and (Bianchi) identities, as well as the affine spaces that
they constitute. In section 3 we discuss the connection-based picture of gravity—
the way in which general relativity may be thought of as a Y-M-type of gauge
theory in the manner of ADG (Mallios, manuscript in preparation). Mainly on
the basis of the literature, (Mallios, 2001), we present vacuum Einstein gravity `a
la ADG and explore the relevant gravitational moduli spaces of spin-Lorentzian
connections. In section 4 we remind the reader of some basic kinematical features
of our curved principal finsheaves of qausets from Mallios and Raptis (2001, in
press) and, in particular, on the basis of recent results of Papatriantafillou (2000,
2001) and Vassiliou (1994, 1999, 2000), we describe in a categorical way in-
verse (projective) and direct (inductive) limits of such principal finsheaves and
their reticular connections. We also comment on the use of the real (R) and com-
plex (C) number fields in our manifold-free, combinatory-algebraic theory, and
compare it with some recent critical remarks of (Isham, 2002) about the a pri-
ori assumption—one that is essentially based on the classical manifold model of
space-time—of theR andC continua in conventional quantum theory vis-`a-vis its
application to quantum gravity. Section 5 is the focal area of this paper as it presents
a locally finite, causal, and quantal version of the vacuum Einstein equations for
Lorentzian gravity. The idea is also entertained of developing a possible covariant
quantization scheme for finitary Lorentzian gravity involving a path integral-type
of functional over the moduli spaceEAi /Gi of all reticular gauge-equivalent spin-
Lorentzian connectionsEAi . On the basis of the “innate” finiteness of our model,
we discuss how such a scenario may on the one hand avoid ab initio the choice of
measure forEAi that troubles the continuum functional integrals over the infinite
dimensional, non-linear and with a “complicated” topology moduli spaceA(+)

∞ /G
of smooth, (self-dual) Lorentzian connections in the standard covariant approach
to the quantization of (self-dual) Lorentzian gravity, and on the other, how our
up-front avoiding of Diff(M) may cut the “Gordian knot” that the problems of
time and of the inner product in the Hilbert space of physical states present to the
nonperturbative canonical approach to quantum gravity based on Ashtekar’s new
variables and the holonomy (Wilson loop) formalism associated with them. Ulti-
mately, all this points to the fact thatour theory is genuinelyC∞-smooth space-time
background independentand, perhaps more importantly,regardless of the peren-
nial debate whether classical (vacuum) gravity should be quantized covariantly
or canonically. This makes us ask—in fact, altogether doubt—whether quantizing
classical space-time and gravity by using the constructions and techniques of the
usual differential geometry of smooth manifolds is the “right” approach to quan-
tum space-time and gravity, thus align ourselves more with the categories 2 and 3
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above, and less with 1. As a matter of fact, and in contradistinction to the “icono-
clastic” approaches in category 3 (most notably, in contrast to the theory of causal
sets), in developing our entirely algebraico–sheaf–theoretic approach to finitary
Lorentzian quantum gravity based on ADG, we have come to question altogether
whether the notion of (an inert geometrical background) “space-time”—whether
it is modelled after a continuous or a discrete base space—makes any physical
sense in the ever dynamically fluctuating quantum deep where the vacuum is
“filled” solely by (the dynamics of) causons and where there is no “ambient” or
surrounding space-time that actively participates into or influences in any way that
dynamics.12 We thus infer that both our finitary vacuum Einstein equations for the
causon and the path integral-like quantum dynamics of our reticular (self-dual)
spin-Lorentzian connectionsEA(+)

i is “genuinely,” or better, “fully” covariant since
they both concern directly and solely the objects (the quanta of causality, i.e., the
dynamical connectionsEAi ) that live on that base “space(time),” and not at all that
external, passive, and dynamically inert “space(time) arena” itself. We also make
comments on geometric (pre) quantization (Mallios, 1998b, 1999, 2001b) in the
light of our application here of ADG to finitary and causal Lorentzian gravity
(Mallios and Raptis, in press) and we stress that our scheme may be perceived
as being, in a strong sense, “already” or “inherently” quantum, meaning that it is
in no need of the (formal) process of quantization of the corresponding classical
theory (here, general relativity on aC∞-smooth space-time manifold). This seems
to support further our doubts about the quantization of classical space-time and
gravity mentioned above. Furthermore, motivated by the “full covariance” and
“inherent quantumness” of our theory, we draw numerous close parallels between
our scenario and certain ideas of Einstein about the so-called (postgeneral relativ-
ity) “new ether” concept, the unitary field theory that goes hand in hand with the
latter, but more importantly, about the possible abandonement altogether, in the
light of singularities and quantum discontinuities, of this continuous field theory
and theC∞-space-time continuum supporting it fora purely algebraic description
of reality (Einstein, 1956). In toto, we argue that ADG, especially in its finitary
and causal application to Lorentzian quantum gravity in the present paper, may
provide the basis for theorganic(Einstein, 1949),algebraic(Einstein, 1956) the-
ory that Einstein was searching for in order to replace the multiple assailed by
unmanageable singularities, unphysical infinities, and other anomaliles geometric
space-time continuum of macroscopic physics. At the same time, we will maintain
that this abandonement of the space-time manifold for a more finitistic–algebraic
theory can be captured to a great extent by the mathematical notion of Gel’fand

12Of course, we will see that there is a base topological “localization space”—a stage on which we
solder our algebraic structures, but this space is of an ether-like character, a surrogate scaffolding of
no physical significance whatsoever as it does not actively engage into the quantum dynamics of the
causons—the quanta of the fieldEAi of quantum causality that is localized (gauged) and dynamically
propagates on “it.”
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duality—a notion that permeates the general sheaf–theoretic methods of ADG
effectively ever since its inception (Mallios, 1986, 1992, 1998a) as well its partic-
ular finitary, causal, and quantal applications thereafter (Raptis and Zapatrin, 2000,
2001; Raptis, 2000a,b, 2001a,b, 2002; Mallios and Raptis, 2001, in press). The
paper concludes with some remarks onC∞-smooth singularities—some of which
having already been presented in a slightly different, purely ADG-theoretic, guise
in Mallios (2002)—that anticipate a paper currently in preparation (Mallios and
Raptis, manuscript in preparation).

2. CONNECTIONS IN ABSTRACT DIFFERENTIAL GEOMETRY

Connections,alias“generalized differentials,” are the central objects in ADG
which purports to abstract from, thus axiomatize and effectively generalize, the
usual differential calculus onC∞-manifolds. In this section we give a briefrésuḿe
of both the local and global ADG-theoretic perspective on linear (Koszul), pseudo-
Riemannian (Lorentzian) connections and their associated curvatures. For more
details and completeness of exposition, the reader is referred to the literature
Mallios (1998a,b, manuscript in preparation).

2.1. Basic Definitions About Linear Connections

The main notion here is that ofdifferential triad T = (AX, ∂, ΩX), which
consists of a sheafAX of (complex) abelian algebrasAover an in-generalarbitrary
topological space Xcalled thestructure sheaf or the sheaf of coefficientsof the
triad,13 a sheafΩ of (differential) A-modulesÄ over X, and aC-derivation∂
defined as thesheaf morphism

∂ : A → Ω (1)

which isC-linear and satisfies Leibniz’s rule

∂(s · t) = s · ∂(t)+ t · ∂(s) (2)

for any local sectionssandt of A (i.e.,s, t ∈ 0(U, A) ≡ A(U ), withU ⊆ X open).
It can be shown that the usual differential operator∂ in (1) above istheprototype
of aflat A-connection(Mallios, 1998a,b).

13The pair (X, AX) is called aC-algebraized space, whereC corresponds to the constant sheafCX

of the complex numbersC over X, which is naturally injected intoAX (i.e.,C
⊂→AX and, plainly,

C = 0(X, C) ≡ C(X)). It is tacitly assumed that for every open setU in X, the algebraA(U )
of continuous local sections ofAX is a unital, commutative, and associative algebra overC. It
must be noted here however that one could start with aK -algebraized space (K = R, C) in which
the structure sheafAX would consist of unital, abelian, and associative algebras over the fields
K = R, C, respectively. Here we have just fixedK to the complete field of complex numbers, but in
the future we are going to discuss also the real case. Also, in either caseAX is assumed to befine.
In the sequel, when it is rather clear what the base topological spaceX is, we will omit it from AX

and simply writeA.
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The aforementioned generalization of the usual differential operator∂ to an
(abstract)A-connectionD involves two steps emulating the definition of∂ above.
First, one identifiesD with a suitable (C-linear) sheaf morphism as in (1), and
second, one secures that the Leibniz condition is satisfied byD, as in (2) above.
So, given a differential triadT = (A, ∂, Ω), let E be anA-module sheaf onX.
Then, the first step corresponds to definingD as a map

D : E → E ⊗A Ω ∼= Ω⊗A E ≡ Ω(E) (3)

which is aC-linear morphism of the complex vector sheaves involved, while the
second, that this map satisfies the following condition

D(α · s) = α ·D(s)+ s⊗ ∂(α) (4)

for α ∈ A(U ), s ∈ E(U ) = 0(U, E), andU open inX.
The connectionD as defined above may be coined aKoszul linear con-

nectionand its existence on the vector sheafE is crucially dependent on both
the base spaceX and the structure sheafA. For X a paracompactand Haus-
dorff topological space, and forAX a fine sheaf on it, the existence ofD is
well secured, as for instance in the case ofC∞-smooth manifolds (Mallios,
1998a,b).

2.1.1. The Local Form ofD
Given a local gaugeeU ≡ {U ; (ei )0≤i≤n−1} of the vector sheafE of rankn,14

every continuous local sections ∈ E(U )(U ∈ U) can be expressed as a unique
superposition

∑n
i=1 si ei with coefficientssi in A(U ). The action ofD on these

sections reads

D(s) =
n∑

i=1

(siD(ei )+ ei ⊗ ∂(si )) (5)

with

D(ei ) =
n∑

i=1

ei ⊗ ωi j , 1≤ i , j ≤ n (6)

14We recall from the literature (Mallios, 1998a,b; Mallios and Raptis, in press) that in ADG,U =
{Uα}α∈I is called alocal frameor a coordinatizing open cover of, or evena local choice of basis
(or gauge) forE . The ei s in eU are local sections ofE (i.e., elements of0(U, E)) constituting a
basis ofE(U ). We also mention that for theA-module sheafE , regarded as a vector sheaf of rankn,
one has by definition the followingA|U -isomorphisms:E |U = An|U = (A|U )n and, concomitantly,
the following equalities sectionwise:E(U ) = An(U ) = A(U )n (with An then-fold Whitney sum of
A with itself). Thus,E is a locally freeA-module of finite rank n—an appellation synonymous to
vector sheafin ADG (Mallios, 1998). Forn = 1, the vector sheafE is called aline sheafand it is
symbolized byL.
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for some uniqueωi j ∈ Ω(U ) (1≤ i , j ≤ n), which means thatω ≡ (ωi j ∈
Mn(Ω(U )) = Mn(Ω)(U ) is ann× n matrix of sections of local 1-forms. Thus, (5)
reads via (6)

D(s) =
n∑

i=1

ei ⊗ (

∂︷︸︸︷
∂(si )+

n∑
i=1

ω︷ ︸︸ ︷
sjωi j ≡ (∂ + ω)(s) (7)

So that, in toto, every connectionD can be written locally as

D = ∂ + ω (8)

with (8) effectively expressing the procedure commonly known in physics aslocal-
izingor gaugingthe usual (flat) differential∂ to the (curved)covariant derivative
D. Thus, the (non-flat)ω part ofD, calledthe gauge potentialin physics, mea-
sures the deviation from differentiating flatly (i.e., by∂), when one differentiates
“covariantly” byD.15

2.1.2. Local Gauge Transformations ofD
We investigate here, in the context of ADG, the behavior of the gauge potential

partA ofD under local gauge transformations—the so-calledtransformation law
of potentialsin Mallios (1998a,b).

Thus, letE be anA-module or a vector sheaf of rankn. LeteU ≡ {U ; ei=1...n}
and f V ≡ {V ; fi=1...n} be local gauges ofE over the open setsU and V of X
which, in turn, we assume have nonempty intersectionU ∩ V . Let us denote by
g ≡ (gi j ) the followingchange of local gauge matrix

fi =
n∑

i=1

gi j ei (9)

which, plainly, is a local (i.e., relative toU ∩ V) section of the “natural” structure
group sheafGL(n, A) of E16—that is,gi j ∈ GL(n, A(U ∩ V)) = GL(n, A)(U ∩
V).

Without going into the details of the derivation, which can be found in
(Mallios, 1998), we note that under such a local gauge transformationg, the gauge

15In the sequel we will symbolize the gauge potential part ofD in (8) byA instead ofω to be in
agreement with our notation in the previous papers (Mallios and Raptis, 2001, in press), as well as
with the standard notation for the spin-Lorentzian connection in current Lorentzian quantum gravity
research (Ashtekar and Isham, 1992; Ashtekar and Lewandowski, 1994, 1995; Baez and Muniain,
1994).

16We will present some rudiments of structure group (or principal orG-) sheaves of associated vector
sheavesE in the next subsection. One may recognizeGL(n, A) above as the local version of the
automorphism group sheafAutE of E . The adjective “local” here pertains to the fact mentioned
earlier that ADG assumes thatE is locally isomorphic toAn.
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potential partω ≡ A of D in (8) transforms as follows

A′ = g−1Ag+ g−1∂g (10)

a way we are familiar with from the usual differential geometry of the smooth
fiber bundles of gauge theories. For completeness, it must be noted here that
in (10),A ≡ (Ai j ) ∈ Mn(Ω1(U )) = Mn(Ω1)(U ) andA′ ≡ (A′i j ) ∈ Mn(Ω1(V)) =
Mn(Ω1)(V). The transformation ofA under local gauge changes is calledaffine
or inhomogeneousin the usual gauge-theoretic parlance precisely because of the
termg−1∂g. We will return to this affine term in subsection 2.3 and subsequently in
section 5 where we will comment on the essentially nongeometrical (i.e., nontenso-
rial) character of connection. Also, anticipating our discussion of moduli spaces
of gauge-equivalent connections in the next section, we note that (10) expresses

an equivalence relation “
g∼” between the gauge potentialsA andA′.

2.2. Pseudo-Riemannian (Lorentzian) Metric Connections

In this subsection we are interested in endowing a vector sheafE of finite rank
n ∈ Nwith an indefiniteA-valued symmetric inner productρ, and, concomitantly,
studyA-connectionsD that are compatible with the (indefinite) metricg associated
with ρ—the so-calledmetric connections. With an eye towards the applications
to Lorentzian (quantum) gravity in the sequel, we are particularly interested in
metricDs relative to Lorentzian metrics of signature diag(g) = (−,+,+, · · ·).
Also, continuing our work (Mallios and Raptis, 2001), which dealt withprincipal
Lorentzian finsheaves of qausets, we are interested in thegroup sheavesAutA(E)
of A-automorphisms ofE—theprincipal sheaves of structure symmetries ofE .17

In the case of a real (i.e.,K = R and R-algebraized space) Lorentzian vector
sheaf (E , ρ) of rank 4,18 the stalks of the correspondingG-sheaves will “naturally”
be assumed to host the groupSO(1, 3)↑—the orthochronous Lorentz group of

17Commonly known asG-sheaves in the mathematical literature (Mallios, 1998a).
18We would like to declare up front that in this paper we provide no argument whatsoever for assuming

that the dimensionality (rank)n of our vector sheaves is the “empirical” (or better, “conventional”)
4 of the space-time manifold of “macroscopic experience” (or better, of the classical theory). In the
course of this work the reader will realize that all our constructions are manifestly independent of
the classical four-dimensional, locally Euclidean,C∞-smooth, Lorentzian space-time manifold of
general relativity so that we will time and again doubt whether the latter, and the host of (mathemati-
cal) structures that classically it is thought of as carrying (e.g., its uncountably infinite cardinality of
events, its dimensionality, its topological, differential, and metric structures), is a physically meaning-
ful concept. For example, we will maintain that dimensionality and the metric are free mathematical
choices of (i.e., fixed by) the theorist and not Nature’s own, while that the topology and differential
structure are inherent in the dynamical objects (fields) that may be thought of as living and prop-
agating on “space-time,” not by that inert background “space-time” itself, which is devoid of any
physical meaning. Moreover, all this will be expressed in an algebraic, locally finite setting quite
remote from the uncountable continuous infinity of events of the manifold.
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(local) isometries of (E , ρ) which, in turn, is locally isomorphic to the spin-group
SL(2,C).19 We thus catch a first glimpse of the spin-Lorentzian connections con-
sidered in the context of curved finsheaves of qausets in Mallios and Raptis (2001),
which will be dealt with in more detail in section 4.

Thus, letE be a vector sheaf. By anA-valued pseudo-Riemannian inner
productρ onE (over X) we mean asheafmorphism

ρ : E ⊕ E → A (11)

which is (i) A-bilinear between theA-modules concerned, (ii) symmetric (i.e.,
ρ(s, t) = ρ(t, s), s, t ∈ E(U )) and of indefinite signature, and (iii)strongly non-
degenerate. That is, we assume thatρ(s, t), for any two local sectionss andt in
E(U ),20 is given via the canonical isomorphism

E
ρ̃∼= E∗ (12)

betweenE and its dualE∗, as

ρ̃(s)(t) := ρ(s, t) (13)

with (12) being true up to anA-isomorphism.21

We further assume that for the vector sheafE (of finite rankn ∈ N) endowed
with the A-connectionD, the vector sheafΩ in the given differential triadT =
(A, ∂, Ω) is the dual ofE appearing in (12) (i.e.,Ω = E∗ ≡ HomA(E , A)). Thus,

19In the sense that their corresponding Lie algebras are isomorphic:so(1, 3)↑ ' sl(2,C) (Mallios and
Raptis, 2001).

20It is important to notice here that theA-metricρ is not a (bilinear) map assigned to the points of
the base spaceX per se (which is only assumed to be a topological, not a differential, let alone a
metric, space), but to the fibers (stalks) of the relevant module or vector sheaves which are inhabited
by the geometrical objects that live onX. As noted in a previous footnote, in our scheme, metric
and, as we shall see later, topological and differential properties concern the objects that live on
“space(time),” not the supporting space(time) itself. This recalls Gauss’ and Riemann’s original
labors with endowing the linear fiber spaces tangent to a sphere with a bilinear quadratic form—a
metric. They ascribed a metric to the linear fibers, not to the supporting sphere itself which, anyway,
is manifestly “non-linear” (Mallios, 2002). What we highlight by these remarks is thatspace(time)
carries no metric. Equally important is to note that theA-valued metricρ is imposed on these objects
by usand it is intimately tied to (i.e., takes values in) our own measurements (arithmetics) inA (see
comparison between the notions of connection and curvature in subsection 2.3.5).ρ is not a property
of space(time), which does not exist (in a physical sense) anyway; rather, it is an attribute related to our
own measurements of “it all.” These remarks are important for our subsequent physical interpretation
of ADG in its application to finitary Lorentzian quantum gravity in the next four sections. It is a
preliminary indication that in our theory the base space(time) is an ether-like “substance” without
any physical significance. See remarks about “gravity as a gauge theory” in the next section, about
the “physical insignificance” or “nonphysicality” of space-time in subsection 5.1.1 and about “the
relativity of differentiability” in subsection 6.2, as well as some similar anticipations in the literature
(Mallios and Raptis, 2001, in press).

21The epithet “strongly” to “nondegenerate” above indicates that ˜ρ in (12) is alsoonto.
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in line with the usual Christoffel theory (Mallios, 1998), we can define alinear
connection∇, as follows

∇ : E × E → E (14)

acting sectionwise onE(U ) as

∇(s, t) ≡ ∇s(t) := D(t)(s) (15)

Now, one says thatD is a pseudo-RiemannianA-connectionor that it is
compatible with the indefinite metricg of the inner productρ in (11), whenever it
fulfills the following two conditions:

• Riemannian symmetry: ∇(s, t)−∇(t, s) = [s, t ]; for s, t ∈ E(U ) and [·, ·]
the usual Lie bracket (product).
• Ricci identity: ∂(ρ(s, t))(u) = ρ(∇(u, s), t)+ ρ(s, ∇(u, t)); for s, t, u ∈
E(U ), as usual.

In particular, for a Lorentzianρ and its associatedg,22 anA-connectionD is
said to be compatible with the LorentzA-inner productρ onE23 when its associated
Christoffel∇ in (14) satisfies

∇ρ = 0 (16)

which, in turn, is equivalent to the following “horizontality” condition for the
canonical isomorphism ˜ρ in (12) relative to theconnectionDE⊗AE∗ in the tensor
product vector sheafHomA(E , E∗) = (E ⊗A E)∗ = E∗ ⊗A E∗) induced by theA-
connectionD onE

DHomA (E ,E∗)(ρ̃) = 0 (17)

It is worth reminding the reader who is familiar with the usual theory that (17) above
implies that the Levi–CivitaA-connectionD induced by the LorentzA-metricρ
is torsion-free(Mallios, 2001).

2.2.1. Connections on (Lorentzian) Principal Sheaves

As mentioned in the beginning of this subsection, of special interest in our
study is the case of a (real) Lorentzian vector sheaf (E , ρ) of rank 4 whoseA-
automorphism sheafAutAE↑ bearsG = L↑ := SO(1, 3)↑—the orthochronous
ρ-preservingA-automorphisms ofE in its stalks.24 L

+ is the principal sheaf

22With respect to alocal (coordinate) gauge eU ≡ {U ; (ei )0≤i≤n−1} of the vector sheafE of rank
n, ρ(ei , ej ) = gi j = diag(−1,+1, . . .) (Mallios, 1998a,b).

23Such a metric connection is commonly known asLevi–Civita connection.
24One may wish to symbolize the pair (E , ρ) by E↑, thusAutAE↑ by L+. In the sequel, when it is

clear from the context that we are talking about a Lorentzian vector sheafE↑ = (E , ρ), we may use
the symbolsE andE↑ for it interchangeably hopefully without confusion. For a general vector sheaf
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of structure symmetries ofE↑. In turn, E↑ is called theL
+-associated vector

sheaf.25

But let us first give a brief discussion of connections on principal sheaves `a
la ADG and then focus on spin-Lorentzian (metric) connections. The reader will
have to wait until section 4 where we recall in more detail from (Mallios and
Raptis, 2001) the curved principal finisheavesEP↑i of qausets and their nontrivial
connectionsEDi . For the material that is presented below, we draw information
mainly from the literature (Vassiliou, 1994, 1999, 2000).

Let G be a sheaf of groups26 over X. Let E be anA-module andσ a repre-
sentation ofG in E , that is to say, aa continuous group sheaf morphism

σ : G −→ AutE (18)

effecting local (i.e.,U -wise in X) continuous left-actions ofG onE as follows:

G(U )× E(U ) −→ E : (g, ν)½ [σ (g)](ν), ν ∈ E(U ), g ∈ G(U ) (19)

Also, by letting Ω1 be a sheaf of (first-order) differentialA-modules overE ,
Ω1(E) := Ω1⊗A E as in (3), we define aLie sheaf of groupsG27 to be the quadruple
(L, E , σ, ∂̇), whereL is anA-module of Lie algebras,28 σ a representation ofL in
E , and∂̇ the followingA-module sheaf morphism

∂̇ : L −→ Ω1(E) (20)

which reminds one of the flat connection∂ in (1). ∂̇, called theMaurer–Cartan
differential ofG relative toσ ,29 satisfies

∂̇ : (s · t) = σ (t−1) · ∂̇s+ ∂̇t (21)

It must be noted here that in the same way that ADG—the differential geometry
of vector sheaves—represents an abstraction and a generalization of the usual
calculus on vector bundles overC∞-smooth manifolds to the effect thatno calculus,
in the usual sense, is employed at all(Mallios, 1998a,b), Lie sheaves of groups
are the abstract analogues of the usual Lie groups that play a central role in the

E , AutAE is a subsheaf ofEndE , in fact, for a given openU ⊆ X,AutA (E)(U ) ' EndA (EU )•—
the upper dot denotinginvertibleendomorphisms. We thus write in general:AutA (E) ≡ AutE :=
(EndE)•.

25Henceforth we will assume that every principal sheaf acts on the typical stalk of its associated sheaf
on the left (see below).

26By abuse of notation, and hopefully without confusing the reader, in the sequel we will also symbolize
the groups that dwell in the stalks ofG by “G.”

27The reader should note that in the present paper we symbolize the gauge (structure) group of both
Y-M theory and gravity also byG, hopefully without causing any confusion between it and the
abstract Lie sheaf of groups above.

28By assuming that the group sheafG in (18) is a sheaf of Lie groups, we may takeL to be the
corresponding sheaf of Lie algebras.

29 ∂̇ is also known as thelogarithmic differential ofG.
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classical differential geometry of principal fiber bundles over differential manifolds
(Vassiliou, 1994, 1999, 2000).

Thus, letG be a Lie sheaf of groups as above. Formally speaking, by a
principal sheafP with structure groupG relative toG = (L, E , σ, ∂̇)30 we mean
a quadruple (P, L, X, π ) consisting of a sheaf of setsP31 such that

1. There is a continuous right action ofL onP.
2. There is an open gaugeU = {Uα}α∈I of X and isomorphisms of sheaves

of sets (i.e., coordinate mappings)

φα : P|Uα

∼=−→L|Uα
(22)

satisfying

φα(s · g) = φα(s) · g; s ∈ P(Uα), g ∈ L(Uα) (23)

GivenP, a vector sheafE and the representationσ : L −→ AutE , one obtains the
so-calledassociated sheaf ofσ (P),32 which is a sheaf of vector spaces locally of
typeE in the sense that, relative to a coordinate gaugeU forX , there are coordinate
maps

8α : σ (P)|Uα

∼=−→ E |Uα
(24)

We assume that the associated vector sheavesE of theG-sheavesP presented
above are of the type mentioned before in the context of ADG, namely,locally
free A-modules of finite rank(i.e., locally isomorphic toAn) (Mallios, 1998a,b).
We thus come to the main definition of a connectionḊ on a principal sheafP
generalizing the Maurer–Cartan differential∂̇ in (20) in a way analogous to how
D on a vector sheafE in (3) generalized the flat differential∂ in (1). Thus,

Ḋ : P −→ Ω1(E)33 (25)

is a morphism of sheaves of sets satisfying

D(s · g) = σ (g−1) · Ḋs + ∂̇g; s ∈ P(U ) and g ∈ L(U ) (26)

Locally (i.e., U -wise in X), one can show, in complete analogy to the local
decomposition∂ +A of the A-connectionD on E in (8), that Ḋ too can be

30WhereL is the sheaf of Lie algebras of the Lie group sheafG. L is supposed to represent thelocal
structural typeof P (Vassiliou, 1999).

31P may be thought of as “coordinatizing” the principal sheaf, thus we use the same symbol “P” for
the principal sheaf and its coordinatizing sheaf of sets.π is the usual projection map fromP to the
base spaceX. For more details, refer to (Vassiliou, 1994, 1999, 2000).

32Otherwise calledtheP-, or even,theL-associated vector sheaf.
33This morphism can be equivalently written asḊ : P −→ Ω1 ⊗A L(≡ Ä)1(L)), to manifest the usual

statement that a connection on a principal sheaf is a Lie algebra-valued 1-form. Time and again we
will encounter this definition below.
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written as

Ḋ = ∂̇ + Ȧ (27)

and that, for a given coordinate gaugeU = {Uα}α∈I for X with natural local
coordinate sections ofP sα := φ−1

α ◦ 1|Uα
∈ P(Uα),

(Ȧ)α = Ḋ(sα) ∈ Ω1(E)(Uα) (28)

in complete analogy to the local gauge potential 1-formsA of connectionsD on
vector sheaves presented in (5)–(8).34

Now, the essential point in this presentation of connectionsḊ on principal
sheavesP in relation to our presentation ofA-connectionsD on vector sheavesE
earlier is that when the latter are theP-associated sheaves relative to corresponding
representationsσ : L −→ AutE , the following “commutative diagram” may be
used to picture formally the “σ -induced projection̂σ ” of Ḋ onP toD onE

P σ̂ →A

Ḋ D
↓ ↓

Ω1(L) →
id

Ω1(E)

(29)

whereσ̂ may be regarded a morphism betweenP andA regarded simply as sheaves
of structureless sets.35

To make an initial contact with Mallios and Raptis (2001), we can now partic-
ularize the general ADG-based presentation of principal sheavesP above to (real)
LorentzianG-sheaves. As briefly noted earlier, the structure groupG dwelling
in the stalks of the latter is taken to beL↑ := SO(1, 3)↑—the Lie group of or-
thochronous LorentzA-isometries, so thatP in this case is denoted byL+. The
L+-associated sheafE↑ = (E , ρ) is a (real) vector sheaf of rank 4, equipped with
anA-metricρ of absolute trace equal to 2. Thus, there is a local homomorphism
(representation)σ of the Lie algebraso(1, 3)↑ ' sl(2,C) of the structure group

34Furthermore, one can show that for a local change of gaugeg as in (9), theȦs obey a transformation
law of potentials completely analogous to the one obeyed by theAs in (10). Without going into
any details, it readsȦ′ = σ (g)−1Ȧσ (g)+ σ (g)−1∂̇g, (σ (g−1) ≡ σ (g)−1) (Vassiliou, 1994, 1999,
2000).

35That is to say, by forgetting both the group structure of theG-sheafP and the algebra structure of
the structure sheafA. The inverse procedure of building the principal sheafP and the connectioṅD
on it from its associated vector sheafE and the connectionD on it may be loosely called “σ -induced
lifting ‘ σ̂−1’ of (E ,D) to (P, Ḋ). Theσ−1-lifting is a forgetful correspondence since, in going from a
vector sheaf to its structure group sheaf, the linear structure of the former is lost—something which is
in fact reflected on that, whileD is C-linear,Ḋ is not. However, for more details about commutative
diagrams like (29) between principal sheaves (P1, Ḋ1) and (P2, Ḋ2), their corresponding associated
sheaves (E1,D1) and (E1,D1), as well as the respective projections ˆσ of the former to the latter, the
reader is referred to Vassiliou (2000).
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L↑ in L+ into the “Lie algebra” sheafautA(E↑) of the group sheafAutA(E↑) of
invertibleA-endomorphisms ofE preserving the LorentzianA-metricρ—that is,
theA-metricρ symmetries (isometries) ofE↑.

Collecting information from our presentation of connections onG-sheaves
and their associated vector sheaves, we are in a position now to recall from Mallios
and Raptis (2001) that, in the particular case of theL+-associated vector sheafL+,

the gauge potential partAof anA-connectionD onE↑ is anso(1, 3)↑ ' sl(2,C)-valued
1-form onL+,

the so-calledspin-Lorentzian connection 1-form.
After we discuss the affine spaceA of Y-M and Lorentzian gravitational

G-connections from an ADG-theoretic perspective in subsection 2.4, as well as
present the connection-based vacuum Einstein equations ADG theoretically in the
next section, we are going to return to the kinematical spin-Lorentzian connections
on principal finisheaves of qausets and their associated vector sheaves studied in
Mallios and Raptis (2001) in section 4, then we will formulate their dynamical
vacuum Einstein equations in section 5, and finally, in the same section, we will
discuss a possible covariant (i.e., action-based, path integral-type of) quantum
dynamics for them.

2.3. Curvatures of A-Connections

In ADG, the curvatureR of anA-connectionD, likeD itself, is defined as an
A-module sheaf morphism. More analytically, letT = (A, ∂, Ω) be a differential
triad as before. Define “inductively” the following hierarchy of sheaves ofZ+
-gradedA-modulesΩi (i ∈ Z+ ≡ N ∪ {0}) of exterior (i.e., Cartan differential)
forms overX

Ω0 := A, Ω ≡ Ω1 := A ∧A Ω, Ω2 = A ∧A Ω1 ∧A Ω1, · · ·Ωi ≡ (Ω1)i := ∧i
AΩ1

(30)

and, in the same way that∂(≡ d0) is aC-linear morphism betweenA ≡ Ω0 and
Ω ≡ Ω1 as depicted in (1), define a second differential operatord(≡ d1) again as
the followingC-linearA-module sheaf morphism

d : Ω1→ Ω2 (31)

obeying relative to∂

d ◦ ∂ = 0 andd(α · s) = α · ds− s∧∂α, (α ∈ A(U ), s ∈ Ω(U ), Uopen in X)

(32)

and calledthe first exterior derivation36 .

36In (30), “∧A” is the completely antisymmetricA-respecting tensor product “⊗A.”
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Then, in complete analogy to the “extension” of the flat connection∂ to d
above, given aA-moduleE endowed with anA-connectionD, one can define the
first prolongation ofD to be the followingC-linear vector sheaf morphism

D1 : Ω1(E)→ Ω2(E) (33)

satisfying sectionwise relative toD

D1(s⊕ t) := s⊕ dt − t∧Ds, (s ∈ E(U ), t ∈ Ω1(U ) Uopen inX) (34)

We are now in a position to define the curvatureR of anA-connectionD by
the following commutative diagram

(35)

from which we read that

R≡ R(D) := D1 ◦D (36)

Therefore, any time we have theC-linear morphismD and its prolongationD1 at
our disposal, we can define the curvatureR(D) of the connectionD.37 By defining a
curvature spaceas the finite sequence (A, ∂, Ω1d, Ω2) of A-modules andC-linear
morphisms between them, we can distill the last statement to the following:

we can always define the curvatureR of a givenA-connectionD, provided we have a
curvature space.

As a matter of fact, it is rather straightforward to see that, forE a vector sheaf,
R(D) is anA-morphism ofA-modules, in the following sense

R ∈ HomA(E , Ω2(E)) = HomA(E , Ω2(E))(X)

Ω2(EndE)(X) = Z0(U , Ω2(EndE)) (37)

37In connection with (36), one can justify our earlier remark that the standard differential operator
∂, regarded as anA-connection as in (1) (i.e., as the sheaf morphism∂ : A → Ω1 = A ⊗A Ω1 ≡
Ω1(A)), is flat, sinceR(∂) = d ◦ ∂ = d1 ◦ d0 ≡ d2 = 0 (which is secured by the nilpotency of the
usual Cartan–K¨ahler (exterior) differential operatord (Mallios and Raptis, 2002)). In the latter paper,
and in a sheaf-cohomological fashion, it was shown that it is exactlyD’s deviation from nilpotency
(i.e., from flatness), which in turndefinesa nonvanishing curvatureR(D) = D2 6= 0, that prevents
a sequence· · ·Di−1→ Ωi Di→Ωi+1Di+1→ · · · of differentialA-module sheavesΩi andC-linear sheaf
morphismsDi between them from being acomplex. (Di , i ≥ 2, stan for high-order prolongations
of theD0 ≡ D andD1 connections above (Mallios, 1998).)
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whereU = {Uα}α∈I is an open cover ofX andZ0(U , Ω2(EndE)) theA(U )-module
of 0-cocylesof Ω2(EndE) relative to theU-coordinatization ofX.38

2.3.1. The Local Form of R

Motivated by (37) and the last remarks, we are in a position to give the local
form for the curvatureRof a givenA-connectionD. Thus, letE be a vector sheaf of
rankn,D anA-connection on it, andU = {Uα}α∈I a local coordinatization frame
of it. By virtue of (37) we have

R(D) = R = (R(α)
i j ) ≡ ((Rαi j )) ∈ Z0(U , Ω2(EndE)) ⊆

∏
α

Ω2(EndE)(Uα)

=
∏
α

Mn(Ω2(Uα)) (38)

so that we are led to remark that

the curvatureR of anA-connectionD on a vector sheafE of rankn is a 0-cocycle of
localn×n matrices having for entries local sections ofΩ2−i.e., local 2-forms onX.

2.3.2. Local Gauge Transformations of R

We investigate here the behavior of the curvatureR(D) of anA-connection
D under local gauge transformations—the so-calledtransformation law of field
strengthsin the usual gauge-theoretic parlance and in ADG (Mallios, 1998).

Thus, letg ≡ gi j ∈ GL(n, A)(U ∩ V) be the change-of-gauge matrix we con-
sidered in (9) in connection with the transformation law of gauge potentials. Again,
without going into the details of the derivation, we bring forth from (Mallios, 1998)
the following local transformation law of gauge field strengths

for a local frame change :eU g→ eV (U, Vopen gauges in X),

the curvature transforms as :R
g→ R′ = g−1Rg (39)

which we are familiar with from the usual differential geometric (i.e., smooth
fiber bundle-theoretic) treatment of gauge theories. For completeness, we remind
ourselves here that, in (39),RU∩V ≡ (RU∩V

i j ) ∈ Mn(Ω2(U ∩ V))—ann×n matrix
of sections of local 2-forms. The transformation ofR under local gauge changes
is calledhomogeneousor covariantin the usual gauge-theoretic parlance. We will
return to this term in subsection 2.3.5 and subsequently in section 5 where we will
comment on the geometrical (i.e., tensorial) character of curvature.

38One may wish to recall that, for a vector sheafE like the one involved in (37),EndE ≡
HomA (E , E) ∼= E ⊗A E∗ = E∗ ⊗A E .



P1: GMX

International Journal of Theoretical Physics [ijtp] pp937-ijtp-470300 September 26, 2003 16:31 Style file version May 30th, 2002

Finitary, Causal, and Quantal Vacuum Einstein Gravity 1499

2.3.3. Cartan’s Structural Equation—Bianchi Identities

We express in ADG-theoretic terms certain well-known, but important, (local)
identities about curvature. We borrow material mainly from (Mallios, 1998).

So, letE be a vector sheaf and assume thatU = {Uα}α∈I provides a coor-
dinatization for it, as above. The usual Cartan’s structural equation reads in our
case

R(α) ≡ (R(α)
i j ) = dA(α) +A(α) ∧A(α) ∈ Mn(Ω2(Uα)) (40)

and similarly in the case of a sheafE of A-modules andU open inX

R= dA+A ∧A; (Ai j ) ∈ Mn(Ω1(U )) (41)

(41) can be also written in theMaurer–Cartan form

R= dA+ 1

2
[A,A] (42)

by setting [A,A] ≡ A ∧A−A ∧A. For a one-dimensional vector sheafE (i.e.,
a line sheafL) equipped with anA-connectionD, the commutator in (41) vanishes
and we obtain the curvature as the following 0-cocycle

R= (dAa) ∈ Z0(U , dΩ1) = (dΩ1)(X) ⊆ Ω2(X) ⊆
∏
α

Ω2(Uα) (43)

with (Aα) ∈ C0(U , Ω1) =∏α Ä
1(Uα) the corresponding (local)A-connection 0-

cochain ofD.
To express the familiar Bianchi identities obeyed by the curvatureR(D), and

similarly to the extension of∂ ≡ d0 to the nilpotent Cartan–K¨ahler differentiald ≡
d1 in subsection 2.3, we need the extension ofd1 to asecond exterior derivation
d ≡ d2 which again is aC-linear sheaf morphism of the respective exteriorA-
modules39

d : Ω2→ Ω3 (44)

acting (local) sectionwise as follows:

d(s∧ t) := ds∧ t − s∧ dt, ∀s, t ∈ Ω1(U ); U ⊆ X open (45)

and being nilpotent

d2 ◦ d1 ≡ d ◦ d ≡ d2 = 0 (46)

As a result of the extension ofd tod, the aforementionedcurvature space(A, ∂, Ω1,
d, Ω2), when enriched with theA-module sheafΩ3 as well as with the nilpotent
C-linear morphismd in (44), becomes a so-calledBianchi space.

39In the sequel, following the cohomological custom in (Mallios and Raptis, 2002), we identify∂, d,
andd (and all higher-order exterior derivations) with the generic Cartan differentiald, specifying its
order only when necessary and by writing genericallydi (i ≥ 0).
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In a Bianchi space, the usualsecond Bianchi identityholds

dR≡ d R= [R,A] ≡ R∧A−A ∧ R (47)

whered is understood to effect coordinate-wise:d : Mn(Ω2)→ Mn(Ä3).
In the case of a line sheafL, one can easily show by using (30) and the

nilpotency ofd that

d R= 0 (48)

which is usually referred to as thehomogeneous field equation. The latter, in turn,
translates to the following cohomological statement,

the curvatureRof anA-connectionD on a line sheafL overX provides a closed 2-form
on X.

which came very handy in the sheaf-cohomological classification of the curved-
associated line sheaves of qausets and their quanta—the so-called “causons”—
performed in (Mallios and Raptis, 2002).

Finally, one can also show that the second prolongationD2
EndE of the induced

A-connectionDEndE on EndE ∼= E ⊗A E∗ satisfies the following “covariant ver-
sion” of the second Bianchi identity (47) above

D2
EndE (R) = 0 (49)

whereD2
EndE : Ω2(EndE)→ Ω2(EndE). Thus, similarly to (47), one also shows

that

DEndER= d R+ [A, R] (50)

which proves theequivalenceof the second (exterior differential) Bianchi identity
onE and its induced (covariant differential) version onEndE .

2.3.4. The Ricci Tensor, Scalar, and the Einstein–Lorentz (Curvature) Space

Given a (real) Lorentzian vector sheaf (E , ρ) of rankn equipped with a nonflat
A-connectionD,40 one can define, in view of (37) theR following Ricci curvature
operatorR relative to a local gaugeU of E

R(., s)t ∈ (EndE)(U ) = Mn(A(U )) (51)

for local sectionss andt of E in E(U ) = An(U ) = A(U )n.R is anEndE-valued
operator41 .

40The reader should note that below, and only in the vacuum Einstein case, we will symbolize the
connections involved byD instead of the calligraphicD we have used so far to denote the general
A-connections in ADG.

41Due to this,R has been called acurvature endomorphismin (Mallios, 2001).
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SinceR is matrix-valued, as (51) depicts, one can take its trace, thus define
the followingRicci scalar curvature operatorR

R(s, t) := trR(., s)t) (52)

which, plainly, isA(U )-valued.
We have built a suitable conceptual background to arrive now at a central

notion in this paper. A (real) Lorentzian vector sheafE↑ = (E , ρ) over anR-
algebraized space (X, A) such that:

1. it is supported by a differential triadT = (A, ∂, Ω1) relative to which (12)
holds, i.e.,E ≡ Ω1;

2. there is anR-linear Lorentzian connectionD on it satisfying (17) (i.e., a
metric connection) and, furthermore; and

3. it is a curvature space (A, ∂,Ä1, d, Ω2) supporting anull R, that is to say,
aRicci scalar operator satisfying the vacuum Einstein equations

R(E) = 0 (53)

is called anEinstein–Lorentz (E-L) space, while the corresponding base spaceX, an
Einstein space(Mallios, 2001).42 Of course, it has been implicity assumed that, for
an appropriate choice of structure sheafA, Eq. (53)can be actually derived from
the variation of the corresponding Lagrangian density(alias, Einstein–Hilbert
action functionalCH). We will return to this assumption in the next section.

In connection with the definition of an Einstein spaceX, it is worth noting
that

the only structural requirement thatADG places on the Einstein base spaceX is that
it is, merely, a topological space—in fact, an arbitrary topological space, without any
assumptions whatsoever about its differential, let alone its metric, structure.

This prompts us to emphasize, once again (Mallios, 1998, 2001; Mallios and
Rosinger, 1999, 2001; Mallios and Raptis, 2001, 2002; Mallios, 2002), the essential
“working philosophy” of ADG:

to actually do differential geometry one need not assume any “background differen-
tiable space”X, for differentiability derives from the algebraic structure of the objects
(structure algebras) that live on that “space.” The only role of the latter is a secondary,
auxiliary and, arguably, a “physically atrophic” one in comparison to the active role
played by those objects (in particular, the algebraA (U ) of local sections ofA) them-
selves:X merely provides an inert, ether-like scaffolding for the localization and the
dynamical interactions (“algebraically and sheaf–theoretically modelled interrelations”)
of those physically significant objects—a passive substrate of no physical significance

42In the next section, where we will cast Lorentzian gravity as a Y-M-type of gauge theory ´a la ADG,
we will also define aYang–Millsspace analogous to the Einstein space above.
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whatsoever, since it does not actively participate into the algebraico-dynamical rela-
tions between the objects themselves43. All in all, the basic objects that ADG works
with is the sections of the sheaves in focus—that is, the entities that live in the stalks
of the relevant sheaves, and not with the underlying base spaceX, so that any notion
of “differentiability” according to ADG derives its sense from the algebraic relations
between (i.e., the algebraic structure of) those (local) sections, with the apparently “in-
tervening between” or “permeating through these objects” background spaceX playing
absolutely no role in it

2.3.5. A Fundamental Difference BetweenD and R(D) and Its
Physical Interpretation

At this point it is worth stressing a characteristic difference between anA-
connectionD and its curvatureR(D)—a difference that is emphasized by ADG, it
has a significant bearing on the physical interpretation of our theory, and it has been
already highlighted in both (Mallios and Raptis, 2001) and (Mallios and Raptis,
2002); namely that,

while R is anA-morphism,D is only aK -morphism (K = R, C).

This means that, since the structure sheafA corresponds to “geometry” in our
algebraic scheme, in the sense thatA(U)—the algebra of local sections ofA—
represents the algebra of local operations of measurement (of the quantum system
“space-time’)relative to the local laboratory(frame, or gauge, or even “obser-
vation device”)U (Mallios and Raptis, 2001, in press; Raptis, 2000b), it effec-
tively encodesour geometrical information about the physical system in focus.44

43Its arbitrary character—again,X is assumed to be simply anarbitrary topological space—reflects
precisely its physical insignificance. This nonphysicality, the “algebraic inactivity” and “dynam-
ically nonparticipatory character” so to speak, of the background space will become transparent
subsequently when we formulate the dynamical equations for vacuum gravity entirely in terms of
sheaf morphisms between the objects—i.e., virtually the sections—that live on X(the main sheaf
morphism being the connectionD—arguably the central operator with which one actually does
differential geometry). At this point we would like to further note, according to (Mallios, 1998),
that asheaf morphism is actually reduced to a family of (local) morphisms between(the complete
presheaves of)local sections M orE ,F ) 3 φ ↔ (φU ) ∈ Mor (0(E), 0(F )—a category equivalence
through (the section functor)0. In the last section we will return to the inert, passive, ether-like
character of the base space in the particular case thatX is (a region of) aC∞-smooth space-time
manifold. There we will argue how ADG ‘relativizes’ the ‘differential properties’ of space(time).

44As mentioned before,AX is the abelian algebra sheaf ofgeneralized arithmeticsin ADG general-
izing the usual commutative coordinate sheafRC∞M of the smooth manifold—the sheaf of abelian
ringsRC∞(M) of infinitely differentiable, real-valued functions on the differential manifoldM . We
tacitly assume in our theory that“geometry” is synonymous to “measurement”; hence, in the quan-
tum context, it is intimately related to “observation” (being, in fact, the result of it). Furthermore,
since the results of observation arguably lie on the classical side of the quantum divide (the so-called
Heisenberg Schnitt), A must be a sheaf ofabelianalgebras. This is supposed to be a concise ADG-
theoretic encodement of Bohr’s correspondence principle, namely, thatthe numbers that we obtain
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Consequently,

R, which, being anA-morphism, respects our local measurements—the “geometry-
encoding (measuring) apparatus”A of ADG so to speak—is a geometrical object (i.e.,
a tensor) in our theory and lies on the classical side of the quantum divide. On the
other hand,D, which respects only the constant sheafK (= R, C) but not our (local)
measurements inA, is not a geometrical object45 and it lies on the quantum (i.e., the
purely algebraic,̀a la Leibniz (Mallios, 2002), side of Heisenberg’s cut.46

2.4. The Affine SpaceA of A-Connections

We fix theK -algebraized space (X, A) and the differential triadT = (A, ∂, Ω)
on it with which we are working, and we letE be anA-module onX. We denote
by

AA(E) (54)

the set ofA-connections onE . By definition (3),AA(E) is a subset of HomK (E , Ω
(E)) (Ω ≡ Ω1) whose zero element may be regarded as the zeroA-connection in
AA(E). However, by (4), one infers that∂ is also zero in this case, thus we will
exclude altogether the zeroA-connection fromAA(E). Since any connection may
be taken to serve as an “origin” for the space ofA-connections, we conclude that

AA (E) is an affine space modelled after theA(X)-module HomK (E , Ω(E)). For a vector
sheafE , HomK (E , Ω(E)) becomesΩ(EndE)(X).

Now, in connection with the statement above, letD be anA-connection inAA(E) ≡
HomK (E , Ω(E)). Then, it can be shown (Mallios, 1998a,b) that any other

upon measuring the properties of a quantum mechanical system (the so-called q-numbers) must be
commutative (the so-called c-numbers).In other words,the acts of measurement yield c-numbers
from q-numbers, so that “geometry’—the structural analysis of (the algebras of our local measure-
ments of) “space”—deals, by definition, with commutative numbers and the (sheaves of ) abelian
algebras into which the latter are effectively encoded. See also closing remarks in Mallios (1998b)
for a similar discussion of “geometry `a la ADG” in the sense above, as well as our remarks about
Gel’fand dualityin subsection 5.5.1

45Another way to say this is thatthe notion of connection is algebraic (i.e.,analytic), not geometrical.
In short,D is not a tensor. That R is a tensor whileD is not is reflected in their (local) gauge
transformation laws that we saw earlier:A transforms affinely or inhomogeneously (nontensorially),
while Rcovariantly or homogeneously (tensorially) under a (local) change of gauges.

46Although it must be also stressed thatD, like the usual notion of derivative∂ that it generalizes,
has ageometrical interpretation. As the derivative of a function (of a single variable) is usually
interpreted in a Newtonian fashion as the slope (gradient) of the tangent to the curve (graph) of the
function, soD can be interpreted geometrically as a parallel transporter of objects (here,A-tensors)
along geometrical curves (paths) in space(time). However, it is rather inappropriate to think ofD as a
geometrical object proper and at the same maintain a geometrical interpretation for it, fordoes it not
sound redundant to ask for the geometrical interpretation of an “inherently geometrical” object, like
the triangle or the circle, for instance? In other words,if the notion of connection was “inherently
geometrical,” it would certainly be superfluous to also have a geometrical interpretation for it.
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connectionD′ in AA(E) is of the form

D′ = D + u (55)

for a uniquely definedu ∈ HomA(E , Ω1(E)). For E a vector sheaf,u belongs
to Ω1(EndE)(X). Thus, for a givenD ∈ AA(E) we can formally write (55) as
AA(E) = D + HomA(E , Ω1(E)), within a bijection. Interestingly enough, (55) tells
us that the difference of two connections, which areK -linear sheaf morphisms, is
anA-morphism like the curvature; hence, in view of the comparison betweenD
andR(D) above, we can say thatD′ −D is a geometrical object since it respects
our measurements inA by transforming homogeneously (tensorially) under (local)
gauge transformations.47

In the particular case of a line sheafL,

AA (L) can be identified withΩ1(X)—theA(X)-module of“1-forms” on X.

Thus, given any connectionD in AA(L), any other connectionD′ on L can be
written asD′ = D + ω for some uniqueω in Ω1(X). This result was used in
Mallios and Raptis (in press) for the sheaf-cohomological classification of the
line sheaves associated with the curved principal finsheaves of qausets and the
nontrivial connections on them in Mallios and Raptis (2001).

We will return toAA(E) in the next section where we will factor it by the
structure (gauge) groupG = Aut(E) of E to obtain the orbifold or moduli space
AA(E)/G of gauge-equivalent connections onE of a Y-M or gravitational type
depending onG.

3. VACUUM EINSTEIN GRAVITY AS A Y-M-TYPE OF GAUGE THEORY
À LA ADG

In this section we present the usual vacuum Einstein gravity in the language of
ADG, i.e., as a Y-M-type of gauge theory describing the dynamics of a Lorentzian
connection on a suitable principal Lorentzian sheaf and its associated vector sheaf,
in short, on an E-L space as defined above. We present only the material that
we feel is relevant to our subsequent presentation of finitary vacuum Lorentzian
gravity encouraging the reader to refer to the literature (Mallios, 1998a,b, 2001a,
manuscript in preparation) for more analytical treatment of Y-M theories and
gravity à la ADG. But let us first motivate in a rather general way this conception
of gravity as a gauge theory.

47The reader could verify thatu transforms covariantly under (local) changes of gauge.
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3.1. Physical Motivation

It is well known that the original formulation of general relativity was in terms
of a pseudo-Riemannian metricgµν on aC∞-smooth space-time manifoldM . For
Einstein, the 10 components of the metric represented the gravitational potentials—
the pure gravitational dynamical degrees of freedom so to speak. However, very
early on it was realized that there was an equivalent formulation of general relativity
involving the dynamics of the so-calledspin-connectionω. This approach came to
be known asEinstein–Cartan theory(Gockeler and Schucker, 1990) and arguably it
was the first indication, long before the advent of the Y-M gauge theories of matter,
that gravity concealed some sort of gauge invariance which was simply masked by
the metricformulation.48 In fact, Feynman, in an attempt to view gravity purely
field-theoretically and, in extenso, quantum gravity as a quantum field theory (i.e.,
in an attempt to quantize gravity using a language and techniques more familiar
to a particle physicist than a general relativist,49 ) he essentially “downplayed,”
or at least undermined, the differential geometric picture of general relativity and
instead he concentrated on its gauge-theoretic attributes. Brian Hatfield nicely
reconstructed Feynman’s attitude towards (quantum) gravity in (Feynman, 1999),50

as follows:

. . .Thus it is no surprise that Feynman would recreate general relativity from a nonge-
ometrical viewpoint. The practical side of this approach is that one does not have to
learn some “fancy-schmanzy” (as he liked to call it) differential geometry in order to
study gravitational physics. (Instead, one would just have to learn some quantum field
theory.) However, when the ultimate goal is to quantize gravity, Feynman felt that the
geometrical interpretation just stood in the way. From the field theoretic viewpoint, one
could avoid actually defining—up front—the physical meaning of quantum geometry,
fluctuating topology, space-time foam, etc., and instead look for the geometrical mean-
ing after quantization. . .Feynman certainly felt that the geometrical interpretation is
marvellous, but “the fact that a massless spin-2 field can be interpreted as a metric
was simply a coincidence that might be understood as representing some kind of gauge
invariance.”51

48Recently, after reading (Kostro, 2000), the present authors have become aware of a very early
attempt by Eddington at formulating general relativity (also entertaining the possibility of unifying
gravity with electromagnetism) based solely on the affine connection and not on the metric, which
is treated as a secondary structure, “derivative” in some sense from the connection. Indicatively,
Kostro writes, “. . . [Eddington’s]approach relied on affine geometry. In this geometry, connection,
and not metric, is considered to be the basic mathematical entity. The metric gµν (x) needed for the
description of gravitational interactions, appears here as something secondary, which is derived
from connection. . .” (bottom of p. 99 and references therein).

49Such an approach was championed a decade later by Weinberg in a celebrated book (Weinberg,
1972).

50See Hatfield’s Preamble titledQuantum Gravity.
51Our emphasis of Feynman’s words as quoted by Hatfield.
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Feynman’s “negative” attitude towards the standard differential geometry and the
smooth space-time continuum that supports it,52 especially if we consider the
unrenormalizable infinities that plague quantum gravity when treated as another
quantum field theory, is quite understandable if we recall from the beginning of
the present paper his earlier position—repeated once again, thatthe theory that
space is continuous is wrong, because we get. . . infinities. . . the simple ideas of
geometry, extended down to infinitely small, are wrong!.”53

However, it must be noted that Feynman’s “unconventional” attempt in the
early 1960s to tackle the problem of quantum gravity gauge quantum field-
theoretically was preceded by Bergmann’s ingenious recasting of the Einstein-
Cartan theory in terms of two-component spinors, thus effectively showing that
the main dynamical field involved in that theory—the spin connectionω—is an
sl(2,C)-valued 1-form (Bergmann, 1957)54 . All in all, it is remarkable indeed
that such a connection-based approach to general relativity, classical or quan-
tum, has been revived in the last 15 years or so in the context ofnonperturbative
canonical quantum gravity. We refer of course to Ashtekar’s modification of the
Palatinivierbeinor comoving four-frame-based formalism by using new canonical
variables to describe the phase space of general relativity and in which variables
the gravitational constraints are significantly simplified (Ashtekar, 1986). Inter-
estingly enough, and in relation to Bergmann’s work mentioned briefly above, in
Ashtekar’s scheme the principal dynamical variable is ansl(2,C)-valuedself-dual
spin-Lorentzian connection1-formA+55 (Ashtekar, 1986).

But after this lengthy Preamble, let us get on with our main aim in this section
to present the classical vacuum Lorentzian gravity as a Y-M-type of gauge theory
in the manner of ADG.

3.2. Y-M Theory à la ADG—Y-M Curvature Space

Let (E , ρ) be a (real) Lorentzian vector sheaf of finite rankn associated
with a differential triadT = (A, ∂, Ω1), which in turn is associated with theR-
algebraized space (X, A),56 andD a nontrivial LorentzianA-connection on it (i.e.,
R(D) 6= 0). In ADG, the pair (E , D) is generically referred to as aY-M field, the

52The reader must have realized by now that by the epithets “standard,” or “usual,” or more importantly,
“classical,” to “differential geometry” we mean the differential geometry ofC∞-smooth manifolds—
the so-called “calculus on differential manifolds.”

53In the closing section we will return to comment thoroughly, in the light of ADG, on this remark by
Feynman and the similar one of Isham also quoted in the beginning of the paper.

54More precisely, in Bergmann’s theoretical scenario for classical Lorentzian gravity,gµν is replaced
by a field of four 2× 2 Pauli spin-matrices which is locally invariant when conjugated by a member
of SL(2,C)—the double cover of the Lorentz group.

55Later in the present section we will discuss briefly self-dual connections from ADG’s point of view.
56With X a paracompact Hausdorff topological space andA a fineunital commutative algebra sheaf

(overR) on it, as usual.
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triplet (E , ρ ,D) as aLorentz–Yang–Mills (L-Y-M) field, and it has been shown
(Mallios, 1998, 2001) that57

every Lorentzian vector sheaf yields a (nontrivial) L-Y-M field (E , ρ ,D) on X the
(nonvanishing) field strength of which isF (D).

As in the definition of the E-L space earlier, in case the curvatureF of the con-
nectionD of a L-Y-M field satisfies the free Y-M equations, which we write as
follows:58

δ2
EndE (F) = 0 or 12

EndE (F) = 0 (56)

and which, in turn, we assume that can be obtained from the variation of a cor-
responding Y-M action functionalYM,59 the curvature space (A, ∂, Ω1, d, Ω2)
associated with the L-Y-M field is called anL-Y-M curvature space60 , while the
supportingX, anL-Y-M space.61 In connection with the said derivation of the Y-M
equations fromYM, we note that62

the solutions of the Y-M equations that correspond to a given Y-M field (E ,D) are
precisely the critical or stationary points (or extrema) ofYM that can be associated
with E .

To make sense of (56) ADG theoretically, we need to define the coderivative and
the Laplacian of a given L-Y-M field (E , ρ ,D). We do this below.

57In the sequel, and similarly to how we used different symbols for the (vacuum) gravitational connec-
tionD and its Y-M counterpartD, we will useF for the curvature of the latter instead ofR (R and
R) that we used for the former. In the Y-M context the curvature of a connection is usually referred
to as the (gauge) field strength.

58In (56), “δ” is thecoderivative(Gockeler and Schucker, 1990) and1 theLaplacian operator, which
we will define in an ADG-theoretic manner shortly. These are two equivalent expressions of the
free Y-M equations. Their equivalence, which is a consequence of the covariant differential Bianchi
identity (50), has been shown in Mallios (1998a).

59We will discuss this derivation in more detail shortly.
60A particular kind of Bianchi space defined earlier.
61In order for the reader not to be misled by our terminology, it must be noted here that, in contrast

to the usual term “(free) Yang–Mills field” by which one understands the field strength of a gauge
potential which is a solution to the (free) Y-M equations (56), in ADG, admittedly with a certain abuse
of language, a Y-M field is just the pair (E ,D), without necessarily implying thatF (D) satisfies
(56). On the other hand, the Y-M space X supporting the Y-M curvature space (A, ∂, Ω1, d, Ω2)
associated with a Y-M field (E ,D), is supposed to refer directly to solutionsF (D) of (56)—as it
were, it represents the “solution space” of (56). This is in complete analogy to the Einstein-Lorentz
space and Einstein spaceX defined in connection with the vacuum Einstein equations for Lorentzian
gravity in (53). We will return to comment further on this conception of a curvature space as a
geometrical “solution space” in section 5 when we express (53) in finitary terms.

62In fact, the statement that follows is a theorem in ADG (Mallios, 1998b, 2001a, manuscript in
preparation). We will return to it in subsection 3.3.
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3.2.1. The Adjointδ and the Laplacian1 of an A-Connection in ADG

Let T = (A, ∂, Ω1) be the differential triad we are working with andρ a
Lorentzian A-metric on it, as usual. Let alsoE be a Lorentzian vector sheaf of
finite rankn andD a Lorentzian Y-M connection on it. By emulating the classical
situation sheaf–theoretically, as it is customary in ADG, one can define theadjoint
derivationδ ofD relative toρ as the following A-morphism of the vector sheaves
involved

δ1 ≡ δ : Ω1(E) −→ E(≡ Ω0(E)) (57)

satisfying

ρ(D(s), t) = ρ(s, δ(t)) (58)

with the obvious identifications:∀s ∈ E(U ), t ∈ Ω1(E)(U ), andU a common open
gauge ofE andΩ1(E). δ is uniquely defined through theA-metric isomorphism
E ' E∗ we saw in (12).

To define the Laplacian1 associated withD, apart from the connection
D ≡ D0 and the coderivativeδ, we also needD1 (the first prolongation ofD, as
in (33)) andδ;Ä2(E)→ Ä1 (the second contraction relative toD,63 ) as follows:

1 ≡ 11 := δ2 ◦D1+D0 ◦ δ1 ≡ δD +Dδ : Ä1(E)→ Ä1(E) (59)

Higher order Laplacians1i , generically referred to as1, can be similarly defined
asK -linear vector sheaf morphisms

1i := Äi (E)→ Ä1(E), i ∈ N (60)

and they read via the corresponding higher order connectionsDi and coderivatives
δi

1i := δi+1 ◦Di +Di−1 ◦ δi , i ∈ N (61)

with the higher order analogues of (58) being

ρ(Dp(s), t) = ρ(s, δ p+1(t)), p ∈ Z+ (62)

whereρ is theA-metric on the vector sheafΩp(E) and the “exterior” analogue of
(12) reading

Ωp(E)
⊂−→̃
ρ

(Ωp(E))∗ (63)

Having defined1 and δ, the reader can now return to (56) understanding
δ2
EndE and12

EndE as the mapsδ2
EndE andΩ2(EndE)→ Ω2(EndE), and12

EndE =

63Which can be defined in complete analogy to (58).
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δ3
EndE ◦D2

EndE +D1 ◦ δ2
EndE : Ω2(EndE)→ Ω2(EndE) respectively.64 By abus-

ing notation, we may rewrite the free Y-M Eq. (56) as

δ(F) = 0 or 1(F) = 0 (64)

hopefully without sacrificing understanding.
Our ADG-theoretic exposition of the Y-M equations so far, together with

a quick formal comparison that one may wish to make between the aforedefined
(vacuum) E-L and the (free) L-Y-M curvature spaces, reveals our central contention
in this section, namely that

in ADG, vacuum Einstein-Lorentzian gravity is a Yang–Mills type of gauge theory
involving the dynamics of a Lorentzian connectionD on an Einstein spaceX. In com-
plete analogy to the L-Y-M case above, the corresponding triplet (E , ρ ,D) (whose Ricci
scalar curvatureR is) satisfying (53), is called a (vacuum) Einstein-Lorentz field. For
rankn = 4, structure group Aut(E↑) = L↑ and principal sheafL+, the associated vac-
uum Einstein-Lorentz field is written as (E↑,D)(E↑ = (E , ρ)). Locally in the Einstein
spaceX,D = ∂ +A, with A ansl(2,C) ' so(1, 3)↑-valved 1-form representing the
vacuum gravitational gauge potential.

3.3. The Einstein–Hilbert Action Functional EH

Now that we have established with the help of ADG the close structural
similarity between vacuum Einstein-Lorentzian gravity and free Y-M theory, we
will elaborate for a while on our remark earlier that both (53) and (56) or (64) derive
from the extremization of an action functional—the E-HEH in the first case, and
the Y-M YM in the second. Since only vacuum Einstein gravity interests us here,
we will discuss only the variation ofEH, leaving the variation ofYM for the
reader to read from (Mallios, 1998a,b, manuscript in preparation).

As it has been transparent in the foregoing presentation, from the ADG-
theoretic point of view, the main dynamical variable in vacuum Einstein Lorentzian
gravity is the spin-Lorentzian A-connectionD, or equivalently, its gauge potential
partA on the vector sheafE↑ = (E , ρ). Thus, one naturally anticipates that

the E-H actionEH is a functional on the affine spaceAA (E↑) of Lorentzian metric
(i.e.,ρ-compatible)A-connections onE↑.

Indeed, we defineEH as the following map

EH : AA(E↑)→ A(X) (65)

reading “pointwise”

D 7−→ EH(D) := R(D) =: trR(D) (66)

64Always remembering that the field strengthF of the L-Y-M connectionD is anA-morphism between
theA-modulesE andΩ2(E) (i.e., a member ofHomA (E , Ω2(E))(X)), as (37) depicts.
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where. plainly,R is a global section of the structure sheaf of coefficientsA (i.e.,
R ∈ A(X)).

Our main contention (in fact, a theorem in ADG (Mallios, 1998a,b, 2001a))
in 2.3, as well as in 3.2 in connection with Y-M theory, was that

the solutions of the vacuum Einstein field equations (53) that correspond to a given
E-L field (E↑,D) are obtained from extremizingEH—that is, they are the critical or
stationary points of the functionalEH associated withE↑ in (65) and (66) above.

In what follows we will recall briefly how ADG deals with this statement.
The critical points ofEH can be obtained by first restricting it on a curveγ (t)

in connection space (i.e.,γ : t ∈ R→ γ (t) ∈ AA(E↑)) and then by infinitesimally
varying it around its “initial” valueEH[D0] ≡ EH[γ (0)]. Alternatively, and fol-
lowing the rationale in Mallios (2001), to find the stationary points ofEH, one has
to find the “tangent vector” at timet = 0 to a pathγ (t) in the affine spaceAA(E↑))
of A-connections ofE↑, on which pathEH is constrained to take values inA(X)
as (65) dictates. All in all, one must evaluate

˙︷ ︸︸ ︷
EH(γ (t))(0)≡

˙︷ ︸︸ ︷
EH(γ )(0) (67)

whereẋ is Newton’s notation fordx
dt .

For a given Lorentzian metric connectionD, one can take the pathγ in
connection space to be

γ (t) ≡ Dt = D + tD ∈ A A(ε↑), t ∈ R (68)

whereD ∈ Ω1(εndε↑)(X) as mentioned earlier in (55).Dt may be regarded as the
A-connection onε↑ compatible with the Lorentzian metricρt = ρ + tρ ′, with p′

an arbitrary symmetricA-metric onε↑.
So, given the usual E-H action (without a cosmological constant)

CH(D) =
∫
R(D)$ (69)

with $ the volume element associated withρ,65 (67) reads

d

dt
(CH(Dt ))|t=0 ≡

˙︷ ︸︸ ︷
CH(Dt )(0)=

∫
d

dt
(R$ )|t=0 (70)

By setting
˙︷ ︸︸ ︷

CH(Dt ) (0) in (70) equal to zero, one arrives at the vacuum Einstein
equations (53) for Lorentzian gravity.

65We will return to define$ shortly.
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3.3.1. A Brief Note on the Topology ofAA(ε↑)

In the Introduction we alluded to the general fact that the space of connections
in non-linear (i.e., it is not a vector space) with a “complicated” topology. Below
we would comment briefly on the issue of the topology of the spaceAA(ε↑) of
spin-Lorentzian connections onε↑. This issue is of relevance here since one would
like to make sense of theddt -differentiation ofCH in (67). Thus, in connection with
(67), the crucial question appears to be

with respect to what topology (onAA (ε↑)) does one take the limit so as to define the
(“variational”) derivative ofCH with respect to t (i.e., with respect toD) in (67)?66

ADG answers this question by first translating it to an equivalent question about
convergence in the structure sheafA. That is to say,

can one define limits and convergence in the sheafA of coefficients?

To see that this translation is effective, one should realize thatto define the deriva-
tive ofCH one need only be able to take limits and study convergence in the space
where the latter takes values, which, according to (65), isA(X)! Thus, ADG has

given so far the following two answers to the question when
˙︷ ︸︸ ︷

CH(γ ) is well defined:

1. WhenA is a topological algebra sheaf (Mallios, 1998a,b, 2001a, Manu-
script in preparation).

2. WhenA is Rosinger’s algebra of generalized functions (Mallios, 2001a,
manuscript in preparation).

For in both casesA has a well-defined topology and the related notion of
convergence.

In section 5, where we give a finitary, causal, and quantal version of the
vacuum Einstein equations for Lorentzian gravity (53)—them too derived from a
variation of a reticular E-H action functional

−→
CHi , we will give a third example of

algebra sheaves—the finsheaves of incidence algebras—in which the notions of
convergence, limits, and topology (the so-called Rota topology) are well defined

so as to “justify” the corresponding differentiation (variation)

˙︷ ︸︸ ︷
−→

CHi .
The discussion above prompts us to make the following clarification:

to “justify” the derivation of Einstein’s equations from varyingCH with respect toD,
one need not study the topology ofAA (ε↑) per se. Rather, all that one has to secure is
that there is a well-defined notion of (local) convergence inA.67

66This question would also be of relevance if for instance one asked whether the map (path)γ in (68)
is continuous.

67This is another example of the general working philosophy of ADG according to which the un-
derlying space or “domain” so to speak (hereAA (ε↑)) is of secondary importance for studying
“differentiability.” For the latter, what is of primary importance is the algebraic structure of the
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This is how ADG essentially evades the problem of dealing directly with the
“complicated” topology ofAA(ε↑).

We conclude this discussion of the E-H action functionalCH and its variation
yielding the vacuum gravitational equations, by giving a concise ADG-theoretic
statement about the(gauge) invariance of the firstwhich in turn amounts to the
(gauge) covariance of the second. LetE↑ = (E , ρ) be our usual (real) E-L vector
sheaf (of rank 4) andD a spin-Lorentzian gravitational metric connection on it
whose curvatureR is involved inCH(D) above. Then,

the Einstein-Hilbert functionalCH is invariant under the action of a (local)ρ-preserving
gauge transormation, by which we mean a (local) element (i.e., local section) of the
structure group sheafAutAE↑ ≡ L

+
:= AutρE of E↑ = (E , ρ), which, in turn, is a

subsheaf ofAutAE , where locally,AutAE(U ) = GL(4, A(U )) = GL(4, A)(U ).

3.3.2. A Brief Note on$ , the Hodge-* Operator, and on Self-Duality in ADG

Below, we discuss briefly `a la ADG the volume element or measure$ ap-
pearing in the E-H action integral (69), as well as the Hodge-* operator and the
self-dual Lorentzian connectionsA+ associated with it, thus prepare the ground for
a brief comparison we are going to make subsequently between our locally finite,
causal, and quantal vacuum Einstein gravity and an approach to nonperturbative
canonical quantum gravity based on Ashtekar’s new variables (Ashtekar, 1986).

1. Volume element. Let (X, A) be our usualK -algebraized space andE a
freeA-module of finite rankn over X, which is locally isomorphic to the
“standard” oneAn. Let alsoρ be a strongly nondegenerate (and indefinite,
in our case of interest) metric onE , which makes it apseudo-Riemannian
freeA-module of finite rank n over X. Then, one considers the sequence
ε ≡ (εi )1≤i≤n of global sections ofE ' An(i.e., εi ∈ An(X) = A(X)n)—
the so-calledKronecker gauge ofAn.68 Then, the volume element$

objects that live on that domain. For the notion of derivative, and differentiability in general, one
should care more about the structure of the “target space” or “range” (here the structure sheaf space
A) than that of the “source space” or “domain” (here the base spaceX)—after all, the generic base
“localization” spaceX employed by ADG is assumed to be just a topological space without hav-
ing been assigned a priori any sort of differential structure whatsoever. Of course,in the classical
case, X is completely characterized, as a differential manifold, by the corresponding structure sheaf
Ax ≡ C∞X of infinitely differentiable (smooth) functions(in particular, see our comments on Gel’fand
duality in subsection 5.5.1). In other words, the classical differential geometric notions “differential
(ie, C∞-smooth) manifold” and “the topological algebraC∞(X)” are tautosemous (i.e., semantically
equivalent) notions. Alas, other more general kinds of differentiability may come from algebraic
structuresA other thanC∞(X) that one may localize sheaf–theoretically (as structure sheavesAx)
on an arbitrary topological spaceX. This is the very essence of ADG and will recur time and again
in the sequel.

68In ADG, this appellation forε is reserved for positive definite (Riemannian) metricsρ (Mallios,
1998a), but here we extend the nomenclature to include indefinite metrics as well.
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associated with the givenA-metricρ is defined to be

$ :=
√
|ρ|ε1∧ . . .∧ εn ∈ (∧nAn)(X) ≡ (detAn)(X) = A(X) (71)

That is to say,

the volume element$ is a nowhere vanishing (becauseρ is nondegener-
ate) global section of the structure sheafA. Moreover, since (∧nAn)∗(X) =
(∧n(An)∗)(X)(detAn)∗(X) = A(X),$ can be viewed as anA(X)-linear mor-
phism on det (An) and, as such, as a map ofA into itself:$ ∈ (EndA)(X) =
EndA = A(X).

The crux of the argument here is that the definition (71) of$ readily
applies to the case whereX is an Einstein space and (E↑, ρ) our usual
(real) Lorentzian vector sheaf on it. This is so because, as mentioned
earlier,E↑ is a locally freeA-module of rank 4, that is, locally (i.e.,U -
wise) in X : E↑ ' A4. Hence, the volume element$ appearing in (69) is
now an element ofA(U ). Of course, since, by definition,A is afine sheaf,
here too$ can be promoted to a global section ofA($ ∈ A(X)).

2. Hodge-∗. As with the volume element$ , let (E , ρ) be a pseudo-
Riemannian (Lorentzian) freeA-module of rankn and recall from (12)
the canonicalA-isomorphism ˜ρ between theA-modulesE and its dual
E∗ induced byρ. That is to say,E ρ̃∼=E

∗ ≡ HomA(E , A). We define the
following A-isomorphism∗ of A-modules

∗ : ∧pE∗ → ∧n−pE∗ (72)

To give ∗’s sectionwise action, we need to define first, for any
υ ∈ ∧n−pE(X),

υ∗ := (∧n−pρ̃)(υ) ∈ ∧n−pE∗(X) = (∧n−pE(X))∗ (73)

so that then we can define

(∗u)(υ) := $ (u ∧ υ∗) ≡ (u ∧ υ∗) ·$ ∈ A(X) (74)

for u ∈ ∧pE∗(X) = ∧pE(X)∗.
Two things can be mentioned at this point: first, that for theidentity

or unit global section1 of A, ∗1= $ , and second, that∗ entails anA-
isomorphism of theA-module defined by the exterior algebra ofE∗, ∧E∗,
into itself. The latter means, in turn, that∗ is an element ofAutA(∧E∗).

The map∗ of (72) and (74) is the ADG-theoretic version of the usual Hodge-∗
operator induced by theA-metricρ.

3. Self-dual Lorentzian connectionsA+. Now that we have∗ at our disposal,
we can define a particular class of Y-M A-connectionsD+ on vector
sheaves, the so-calledself-dual connections, whose gauge potential parts
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A+ are coinedself-dual gauge fields. So, we let (E , ρ ,D) be an L-Y-M
field on an L-Y-M spaceX. The definition ofD+s pertains to the property
that their curvatures,F+ := F(D+), satisfy relative to the Hodge-∗duality
operator

∗F+ = F+ (75)

hence their nameself-dual.
In view of (75) and the second Bianchi identity (49), we have

δ2
EndE (F+) = ((−1)n·3+1 ∗Dn−2∗)(F+) = (−1)1+3n ∗Dn−2(F+)

= (−1)1+3n ∗D2
EndE (F+) = 0 (76)

the point being that the (field strengthsF+ of the) self-dual connections
D+ also satisfy the Y-M equations. We will return to self-dual connections
in section 5, where we will discuss the close affinity between our finitary,
causal, and quantal version of vacuum Einstein-Lorentzian gravity and a
recent approach to nonperturbative quantum gravity which uses Ashtekar’s
new (canonical) variables (Ashtekar, 1986).

3.4. Y-M and Gravitational Moduli Space: G-Equivalent Connections

In the present subsection we will give a short account of the ADG-theoretic
perspective on moduli spaces of L-Y-M connections, focusing our attention on the
corresponding moduli spaces of spin-Lorentzian (vacuum) gravitational connec-
tions that are of special interest to our investigations in this paper.

To initiate our presentation, we consider a (real) Lorentzian vector sheaf
E↑ = (E , ρ) and we recall from subsection 2.4 the affine spaceAA(E) of metric
A-connections on it (54). From our discussion ofG-sheaves in subsection 2.2,
we further suppose thatE↑ is the associated sheaf of the principal sheafL

+ :=
AutAE↑ ≡ AutρE—the group sheaf ofρ-preservingA-automorphisms ofE (the
structure group sheaf ofE↑, which is also the (local) invariance group of the free
Y-M action functionalYM(D) (Mallios, 1998a,b).69 Our main contention in this
section is that

the (global) gauge groupAutAE↑(X) ≡ AutAE↑ ≡ L
+

(X) := AutρE acts on the affine
spaceAA(E↑) of metricA-connections on the Lorentzian vector sheafE↑ = (E , ρ).

Let us elaborate a bit on the statement above, which will subsequently lead us to
define moduli spaces of gauge-equivalent connections.

69In the case of the functionalCHD on (E↑,D) we saw in the previous subsection that its (local) invari-
ance (structure) group is precisely (AutAE↑)(U ) := 0(U,AutAE↑) ≡ (AutρE)(U ) =: L

+
(U ) '

L↑.
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We have already alluded to the fact, in connection with the (local) transforma-
tion law of gauge potentialsA of A-connectionsD on general vector sheavesE at
the end of subsection 2.1, that one may be able to establish an equivalence relation
A g∼ A′ between them,g a local gauge transformation (i.e., a local section of the
structureG-sheafAutA(E) ofG; g ∈ AutA(E)(U ) = GL(n, A)(U )). We can extend
this equivalence relation from the gauge potentialsA to their full connectionsD,
as follows.

Schematically, and in general, for anA-moduleE we say that two connections
D andD′ on it are gauge-equivalent if there exists an elementg ∈ Aut(E) making
the following diagram commutative

E D →Ä(E)

g g⊗ 1Ω ≡ g⊗ 1
↓ ↓
E →

D′
Ω(E)

(77)

which is read as

D′ ◦ g = (g⊗ 1) ◦D⇔ D′ = (g⊗ 1) ◦D ◦ g−1 (78)

or in terms of the adjoint representation Ad(G) of the structure groupG 3 g

D′ = g ◦D ◦ g−1 ≡ gDg−1 =: Ad(g)D (79)

It is now clear that

(78) and (79) define an equivalence relation
g∼ on AA (E) : D g∼ D′, g ∈ AutE .

g∼ is
precisely the equivalence relation defined by the action of the structure group AutE of
E onAA(E), as alluded to above.

Thus, it is natural to consider the followingG-actionα onAA(E)

α : AutE × AA(E)→ AA(E) (80)

defined pointwise by

(g,D) 7→ α(g,D) ≡ g ·D ≡ g(D) := gDg−1 ≡ Ad(g)D (81)

with the straightforward identification from (78)

g(D) ≡ gDg−1 ≡ (g⊗ 1) ◦D ◦ g−1 ∈ HomC(E , Ω(E)) (82)

In turn, for a givenD ∈ AA(E), α delimits the following set inAA(E)

OD : = {g ·D ∈ AA(E) : g ∈ AutE}
= {D′ ∈ AA(E) : D′ g∼ D, for some g ∈ AutE} (83)
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called the orbit of anA-connectionD onE under the actionα of the gauge group
G = AutE on AA(E). OD consists of all connectionsD′ in AA(E) that are gauge-
equivalent toD.

Following (Mallios, 1998a,b), we also note that it can be shown that the gauge-
orbit OD in (83) can be equivalently written in terms of the induced connection
DEndE as follows:

OD = {D −DEndE (g)g−1 : g ∈ AutE} (84)

At the same time, thestability groupO(D) of D ∈ AA(E) under the action of
Aut(E) is, by definition, the set of allg ∈ AutE such thatg ·D = D, so that

O(D) = ker(DEndE|AutE ) ≡ {g ∈ AutE : DEndE (g) = 0}
= {g ∈ AutE : [D, g] := Dg− gD = 0} (85)

which means that the stability group of the connectionD ∈ AA(E) consists of all
those (gauge) transformations ofE(g ∈ AutE) that commute withD.

At this point, and before we define moduli spaces of gauge-equivalent connec-
tions ADG-theoretically, we would like to digress a bit and make a few comments
on the possibility of developing differential geometric ideas (albeit, not of a classi-
cal, geometricalC∞-smooth sort, but of an algebraic ADG kind) on the affine space
AA(E). The remarks below are expressed in order to prepare the reader for com-
ments on the possibility of developing differential geometry on the gauge moduli
space of gravitational connections that we are going to make in subsection 5.3 in
connection with some problems (e.g., Gribov’s ambiguity) people have encoun-
tered in trying to quantize general relativity (regarded as a gauge theory) both
canonically (i.e., in a Hamiltonian fashion) and covariantly (i.e., in a Lagrangian
fashion). It is exactly due to these problems that others have also similarly felt
the need of developing differential geometric concepts and constructions (albeit,
of the classical,C∞-sort) on moduli spaces of Y-M and gravitational connections
(Ashtekar and Lewandowski, 1994, 1995).

As a first differential geometric idea onAA(E), we first define a set of ob-
jects (to be regarded as abstract “tangent vectors’) that would qualify as the “tan-
gent space” of AA(E) at any of its pointsD, and then, after we define mod-
uli spaces of gauge-equivalent connections below, we also define an analogous
“ tangent space” to the moduli space at a gauge-orbitOD of a connection
D ∈ AA(E).

We saw earlier (2.4) that forE a vector sheaf of rankn, the affine space
AA(E) can be modelled afterΩ1(EndE)(X). We actually define the latter space to
be the sought after“ tangent space” of AA(E) at any of its“points” D. That is to
say.

T(AA(E),D) := Ω1(EndE)(X) (86)
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and we recall from the foregoing thatΩ1(EndE)(X) is itself anA(X)-module which
locally, relative to a gaugeU , becomes then× n-matrix of 1-formsA(U )-module
Mn(Ω1(U )) = Mn(Ω1)(U ).70

We are now in a position to define theglobal moduli space or gauge orbit
space of theA-connections onE , as follows:

M(E) ≡ AA(E)/AutE :=
⋃

D∈AA(E)

OD =
∑
D
OD (87)

The epithet “global” above indicates that the quotient in (87) can be actually
localized—something that comes in handy when one, as we do, works with a
vector sheafE on X and the latter is gauged relative to a local frameU = {U }. The
localization ofM(E) means essentially that one uses thesheaf of germs of moduli
spaces of theA-connections of the module or vector sheafE in focus. To see this,
the reader must realize that, asU ranges over the open subsets ofX, one deals
with a (complete) presheaf of orbit spaces equipped with the obvious restriction
maps. To follow this line of thought, one first observes the inclusion

AA(E)|U ⊆ AA|U (EU ) (88)

and a similar restriction of the structure group sheafG ≡ AutE . Then, sectionwise
overU one has

(AutE)|U = (AutE)(U ) = IsomA|U (E |U , E |U )

= IsomA|U (E |U , E |U )(U ) ≡ Aut(E |U )(U ) = Aut(E |U ) (89)

thus, in toto, the following local equality

AutE(U ) = Aut(E |U ) (90)

for every openU in X.
So, in complete analogy to (81), one has the action of Aut(E |U ) on the local

setsAA(E)|U of A-connections in (88)

Aut(E |U )× AA(E)|U → AA(E)|U (91)

entailing the following “orbifold sheaf” of gauge-equivalentA-connections onE
M(E) = AA(E)/AutE (92)

70As a matter of fact, one can actually prove (86) along classical lines—for example, by fixing a point
D in the affine spaceAA (E), regard it as “origin” (i.e., the zero vector 0), let a curveγ (t) in AA(E)
pass through it (i.e.,D ≡ D0 = γ (0)), and then find the vector ˙γ (t) tangent toγ . This proof has
been shown to work in the particular case the structure sheafA is a topological vector space sheaf
(Mallios, 1998, 2002) (and in section 5 we will see that it also works in the case of our finsheaves
of incidence algebras for deriving the locally finite, causal, and quantal vacuum Einstein equations
for Lorentzian gravity); in fact, we used it in (67) and (68) to derive the vacuum Einstein equations
from a variational principle on the space of Lorentzian connections.
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M(E) is the aforesaid sheaf of germs of moduli spaces ofA-connections onE .
Finally, it must also be mentioned here, in connection with the local iso-

morphismE ' An of a vector sheafE mentioned earlier, that (AutAE)(U ) above
reduces locally toGL(n, A)(U ) = GL(n, A(U )), as follows:71

(AutAE)(U ) = Aut(E |U ) = Aut(An|U ) = (AutAn)(U )

= Mn(A)•(U ) ≡ GL(n, A)(U ) ≡ GL(n, A(U )) (93)

We can distill this to the following remark:

any local automorphism of a given vector sheafE of rankn over one of its local gauges
U is effectively given by a local automorphism ofAn—that is to say, by an element of
GL(n, A(U )) = GL(n, A)(U ) ≡ GL(n, A|U ).

so that the gauge (structure) groupAutAE of E is locally (i.e.,U -wise) reduced
to the group sheafGL(n, A),72 as it has been already anticipated, for example, in
subsection 2.1.2 in connection with the transformation law of gauge potentials,73

and earlier in connection with vacuum Einstein Lorentzian gravity onE↑.
As noted before, now that we have defined moduli spaces of gauge-equivalent

connections, and similarly to the “tangent space”T(AA(E),D) in (86), we define
T(OD,D)—the “ tangent space” to a gauge-orbit of an elementD ∈ AA(E),D)
and,in extenso, T(M(E),OD—the “ tangent space” to the moduli space ofE at
an orbit ofD ∈ AA(E). We have seen how the inducedA-connection of the vector
sheafEndE

DEndE : EndE → Ω1(EndE) (94)

can be viewed as the “covariant differential” of the connectionD in AA(E). By
defining the induced coderivativeδ1

EndE adjoint toDEndE as

δ1
EndE : Ω1(EndE)→ EndE (95)

we define

SD := D + kerδ1
EndE ≡ {D + u ∈ AA(E) : δ1

EndE (u) = 0} (96)

for u ∈ Ω1(EndE)(X). Of course, foru = 0 ∈ Ω1(EndE)(X), one sees thatD be-
longs toSD, so that

SD is a subspace ofAA(E) throughD. In fact, one can show (Mallios, 1998b, manuscript
in preparation) thatSD is an affineC-linear subsepace ofAA(E) through the pointD,
modelled after (kerδ1

EndE (X).74

71In the case ofE↑, the local reduction below has already been anticipated earlier.
72Or equivalently, to its complete presheaf of sections0(GL(n, A)).
73See remarks after (9).
74(kerδ1

EndE (X) being in fact a sub-A(X)-module ofΩ1(EndE)(X).



P1: GMX

International Journal of Theoretical Physics [ijtp] pp937-ijtp-470300 September 26, 2003 16:31 Style file version May 30th, 2002

Finitary, Causal, and Quantal Vacuum Einstein Gravity 1519

Moreover, and this is crucial for definingT(OD,D), one is able to prove (Mallios,
1998b, manuscript in preparation) that

imDEndE ⊕ kerδ1
EndE = Ω1(EndE)(X) =: T(AA(E),D) (97)

for any local gaugeU of E .
In toto, since bothDEndE andδ1

EndE are restricted on the gauge group AutE ,
and in view of (84), one realizes that

T(ODD) = im(DEndE|AutE ) = ker
(
δ1
EndE|AutE

)⊥
(98)

where “⊥” designates “orthogonal subspace” with respect to theA-metricρ onE .
Thus,

SD is the orthogonal complement of the tangent spaceT(OD ,D) to the orbitOD of
D at the pointD of AA(E).

At the same time, for “infinitesimal variations”u ∈ Ω1(EndE)(X) aroundD ∈
AA(E), one can show (Mallios, 1998b, manuscript in preparation)

T(OD+u,D + u) = im((D + u)EndE|AutE )

= im((DEndE + u)|AutE ) = {(DEndE + u)g :∈ AutE}
(99)

Concomitantly, to arrive atT(M(E),OD) one realizes (Mallios, 1998b, manuscript
in preparation) thatthe gauge groupAutE acts onAA(E) in a way that is compatible
with its affine structure.

That is to say, one has

g(D + u) = gD + gu, ∀g ∈ AutE and u ∈ Ω1(EndE)(X) (100)

The bottom line of these remarks is thatM(E) := AA(E)/AutE can still be con-
strued as an affine space modelled afterΩ1(EndE)(X)/AutE '
(im (DEndE|AutE ))

⊥ ' SD.
Hence one concludes that

T(M(E),OD) ' SD (101)

Now that we haveM(E), we are in a position to define similarly moduli
spaces of (self-dual) spin-Lorentzian connections. Of course, our definition of
“tangent spaces” onOD and onM(E) above carries through, virtually unaltered,
to the particular (self-dual) Lorentzian case. As noted above, this will become
relevant in section 5 where, in view of certain problems that both the canonical
and the covariant quantization approaches to quantum general relativity (based on
the Ashtekar variables) encounter, the need to develop differential geometric ideas
and techniques on the moduli space of (self-dual) spin-Lorentzian connections has
arisen in the last decade or so.
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3.4.1. Moduli Space of (Self-Dual) Spin-Lorentzian ConnectionsD(+)

The last remark prompts us to comment briefly on the space of gauge-
equivalent (self-dual) spin-Lorentzian connections on the (real) Lorentzian vector
sheafE↑ = (E , ρ) of rank 4 which is of special interest to us in the present paper.
When the latter is endowed with a (self-dual) Lorentzian metric connectionD(+)

which (i.e., whose curvature scalarR(+)(D(+)) is a solution of (the self-dual ver-
sion of) (53),75 it is reasonable to enquire about other gauge-equivalent (self dual)

E-L fields (E↑, D̆(+)), withD(+) g∼ D̆(+)(g ∈ G = AutAE↑).
From what has been said above, one readily obtains the local gauge group of

E↑

AutAE↑(U ) ≡ AutρE(U ) = Autρ(E |U ) =: L(U ) '
L↑ ⊂ M4(A)•(U ) = GL(4, A)(U ) = GL(4, A(U )) (102)

and, like in (92), we obtain the localized moduli space (“orbifold sheaf”) of gauge-
equivalent (self-dual) spin-LorentzianA-connectionsD(+) (or their gauge potential
partsA(+)) onE↑

M(+)(E↑) = A(+)
A (E↑)/AutAE↑ ≡ A(+)

A (E↑)/AutρE (103)

Finally, in a possible covariant quantization scenario for vacuum Einstein-
Lorentzian gravity that we are going to discuss in section 5,M(E↑) may be re-
garded as the (quantum) configuration space of the theory in a way analogous to
the scheme that has been proposed in the context of Ashtekar’s new variables for
nonperturbative canonical quantum gravity (Ashtekar, 1986; Ashtekar and Isham,
1992; Ashtekar and Lewandowski, 1994; Ashtekar and Lewandowski, 1995). In
connection with the latter, we note that since the main dynamical variable is a
self-dualspin-Lorentzian connectionD+76 (see end of subsection 3.3), the corre-
sponding moduli space is denoted by

M+(E↑) = A(+)
A (E↑)/AutAE↑ ≡ A+A (E↑)/AutρE (104)

where, as we have already mentioned earlier, the (local) orthochronous Lorentz
structure (gauge) symmetriesG ofE↑ can be written asAutAE↑(U ) ≡ AutρE(U ) =
L↑ := SO(1, 3)↑

locality' SL(2,C) ⊂ M2(C).77

75Which in turn means that (E↑,D(+)) ≡ (E , ρ , cal D(+)) defines a (self-dual) E-L field.
76Or again, locally, its gauge potential partA+.
77Always remembering of course thatL↑ = SO(1, 3)↑ and its double covering spin-groupSL(2,C)

are only locally (i.e., Lie algebra-wise) isomorphic (i.e.,sl(2,C) ' so(1, 3)↑). Also, for a general
(real) Lorentzian vector sheaf (E , ρ) of rank n, which locally reduces toAn (i.e., it is a locally free
A-module), its local (structure) group of Lorentz transformations isAutρE(U ) = SL(n, A)(U ) ≡
SL(n, A(U )) ⊂ AutAE(U ) = GL(n, A)(U ) ≡ GL(n, A(U )) ≡ Mn(A)•(U ) = (EndAE)•(U ).
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4. KINEMATICS FOR A FINITARY, CAUSAL, AND QUANTAL
LORENTZIAN GRAVITY

One of our main aims in this paper is to show that the general ADG-theoretic
concepts and results presented in the last two sections are readily applicable in the
particular case of thecurved finsheaves of qausetsperspective on (the kinematics
of) Lorentzian gravity that has been developed in the two past papers (Mallios
and Raptis, 2001, in press). In the present section, we recall in some detail from
(Mallios and Raptis, 2001), always under the prism of ADG, the main kinematical
structures used for a locally finite, causal and quantal version of vacuum Einstein
Lorentzian gravity, thus we prepare the ground for the dynamical equations to be
described “finitarily” in the next. In the last subsection (4.3), and with the reader
in mind, we give a concise r´esumé—a “causal finitarity” manual so to speak—of
some (mostly new) key kinematical concepts and constructions to be described en
passant below.

More analytically, we will go as far as to present a finitary version of the
(self-dual) moduli spaceM(+)(E↑) in (103) and (104) above—arguably,the ap-
propriate (quantum) kinematical configuration space for a possible (quantum) the-
oresis of the (self-dual) spin-Lorentzian connectionsA(+)

i inhabiting the aforesaid
finsheaves of qausets. We will also present, on the basis of recent results about
projective and inductive limits in the categoryDT of Mallios” differential tri-
ads (Papatriantafillou, 2000, 2001), as well as on results about projective limits
of inverse systems of principal sheaves endowed with Mallios”A-connections
(Vassiliou, 1994, 1999, 2000), the recovery, at the projective limit of infinite re-
finement (or localization) of aninverse system of principal finsheaves of qausets
and reticular spin-Lorentzian connections on them, of a structure that, from the
ADG-theoretic perspective, comes very close to, but does not reproduce exactly, the
kinematical structure of classical gravity in its gauge-theoretic guise—the principal
orthochronous Lorentzian fiber bundleP↑ over aC∞-smooth space-time manifold
M endowed with a nontrivial (self-dual) smooth spin-Lorentzian connectionD(+)

on it (subsection 4.2).78 In this way, we are going to be able to make brief compar-
isons, even if just preliminarily at this early stage of the development of our theory,
between a similar differential geometric scheme on the moduli space of gauge-
equivalent spin-Lorentzian connections that has been worked out in (Ashtekar and

78The word “emulates” above pertains to the fact that our projective limit triad (as well as the principal
sheaf and spin-Lorentzian connection relative to it) will be seen not to correspond precisely to the
classical differential triad (Ax ≡K C∞X , ∂,Ä1), but to one that in the context of the present ADG-
based paper may be regarded as a “generalized smooth” triad (write smooth for short). This smooth
triad’s structure sheaf will be symbolized byAx ≡K C∞X to distinguish it from theKC∞X employed in
the classical case. On the other hand, we will be using the same symbols for the flat 0-th order nilpotent
derivationd0 ≡ ∂ as well as theA-module of first-order differential formsÄ1 in theC∞-smooth and
the usualC∞-smooth triads.
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Lewandowski, 1995), like ADG,through entirely algebraic methods.79 However,
and this must be stressed from the start,

unlike (Ashtekar and Lewandowski, 1995), where projective limit techniques are used
to endow (a completion of) the moduli space of gauge-equivalent connections with a
differential manifold-like structure, thus (be able to) induce to it classical differential
geometric notions such as differential forms, exterior derivatives, vector fields, vol-
ume forms, etc., we, with the help of ADG, already possess those at the finitistic and
quantal level of the curved finsheaves of qausets. Moreover, our projective limit result—
the smooth differential triad, Lorentzian principal sheaf and nontrivial connection on
it which, as noted above, closely resembles the classicalC∞-diferential triad as well
as the principal orthochronous Lorentz sheaf (bundle) and its associated curved lo-
cally Minkowskian vector sheaf (bundle) over theC∞-smooth manifold M of general
relativity—only illustrates the ability of our discrete algebraic (quantal) structures to
yield at the (correspondence) limit of infinite localization or refinement of the qausets
a structure that emulates well the kinematical structure of classical Lorentzian gravity
(Mallios and Raptis, 2001, 2002; Raptis and Zapatrin, 2000, 2001). At the same time,
and perhaps more importantly, this indicates, in contrast to (Ashtekar and Lewandowski,
1995) where projective limits are employed to produce “like from like” (i.e., induce a
classical differential geometric structure from inverse systems of differential manifolds),
what we have repeatedly stressed here, namely that, to do differential geometry—the
differential geometric machinery so to speak—is not inextricably tied to theC∞-smooth
manifold, so that we do not depend on the latter to provide us with the standard, and by
no means unique, necessary or “preferred,” differential mechanism usually supplied by
the algebraC∞(M) of smooth functions on the differential manifoldM as in the clas-
sical case. Our differential geometric machinery, as we shall see in the sequel, comes
straight from the (incidence) algebras inhabiting the stalks of vector, differential module
and algebra sheaves like the generic locally freeA-modulesE of ADG above, over a
finitary topological base space(time) without mentioning at all any differential structure
that this base space should a priori be equipped with, and certainly not the classical
C∞-manifold one. In other words, our differential geometric machinery does not come
from assumingC∞M as structure sheaf in our finitary, ADG-based constructions.80

We would like to distill this to the following slogan that time and again we
will encounter in the sequel:

Slogan 1. Differentiability derives from (algebras in) the stalk (in point of fact,
from the structure sheafA of coefficients or generalized arithmetics), not from the
base space.81

79For, to recall Grauert and Remmert: “The methods of sheaf theory are algebraic.” (Grauert and
Remmert, 1984). The purely algebraic character of ADG has been repeatedly emphasized in the
leterature (Mallios, 1998a,b, 2001a, 2002, manuscript in preparation; Mallios and Raptis, 2001, in
press; Mallios and Rosinger, 1999, 2001).

80A similar point was made in footnotes 11 and 67, for example. We will return to discuss it in more
detail in the concluding section.

81As we have said many times, the classical case corresponding to taking for base spaceX (a region
of) the smooth manifoldM and forAX its structure sheafC∞X —the sheaf of germs of sections of
infinitely differentiable functions onX.
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Then, the upshot of our approach to all the structures to be involved in the
sequel is that

in the spirit of ADG (Mallios, 1998a,b, 2001a; Mallios and Raptis, 2001, in press;
Mallios and Rosinger, 1999, 2001) and what has been presented so far here along
those lines, everything to be constructed below, whether kinematical or dynamical,
is manifestly independent of a backgroundC∞-smooth space-time manifoldM , its
“structure group” Diff(M) and, as a result, of the usual differential geometry (i.e.,
calculus) that such a base space supports. In a nutshell, our (differential) geometric
constructions are genuinely backgroundC∞-manifold free.

Interestingly enough, such a position recurs time and again, as aleit motivso to
speak, in the Ashtekar quantum gravity program (Ashtekar, 1994, 2002). But let
us now go on to more details.

4.1. Principal Finsheaves and Their Associated Finsheaves of Qausets

First, we give a short account of the evolution of our ideas leading to (Mallios
and Raptis, 2001) and (Mallios and Raptis, in press) which the present paper is
supposed to continue as it takes a step further into the dynamical realm of qausets.82

4.1.1. A Brief History of Finitary Space-Time and Gravity

Our entire project of developing a finitary, causal, and quantal picture of
space-time and gravity started with Sorkin’s work on discrete approximations of
continuous space-time topology (Sorkin, 1991). Briefly, Sorkin showed that when
one substitutes the point events of a bounded regionX of a topological (i.e.,C0)
space-time manifoldM by “coarse” regions (i.e., open sets)U about them belong-
ing to a locally finite open coverUi of X, one can effectively replace the latter by
locally finite partially ordered sets (posets)Pi which areT0-topological spaces in
their own right and, effectively, topologically equivalent toX. Then, these posets
were seen to constitute inverse systems

←
P = (Pi ,º) of finitary topological spaces,

with the relationPj º Pi being interpreted as “the act of topological refinement or
resolution ofPi to Pj .”83 Sorkin was also able to show, under reasonable assump-
tions about X,84 that the Pi s are indeed legitimate substitutes of it in that at the

82For a more detailed and thorough description of the conceptual history of our work, as well as of its
relation with category and topos theory, the reader is referred to the recent work (Raptis, 2002). A
topos-theoretic treatment of finitary, causal, and quantal Lorentzian gravity is currently under way
(Raptis, manuscript in preparation).

83Meaning essentially that the open coveringUi of X from which Pi , derives is a subcover of (i.e.,
coarser than)U j . Roughly, the latter contains more and “smaller” open sets aboutX’s points than the
former. In this sense, acts of “refinement,” “resolution,” or “localization” are all synonymous notions.
That is, one refines the coarse open sets aboutX’s point events and in the process she localizes them
(i.e., she effectively determines their locus) at higher resolution or “accuracy.” As befits this picture,
Sorkin explicitly assumes thatthe points of X are the carriers of its topology(Sorkin, 1991).

84For instance,X was assumed to berelatively compact(open and bounded) and (at least)Ti .
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inverse or projective limit of infinite refinement, resolution, or localization of the
Ui s and their associatedPi s, one recovers theC0-regionX (up to homeomorphism).
Formally one writes

lim←
←
P ≡ lim

∞←i
Pi ≡ P∞

homeo.' X (105)

Subsequently, by exploring ideas related to Gel’fand duality,85 which had already
been anticipated in (Zapatrin, 1998), Raptis and Zapatrin showed how to associate
a finite dimensional, associative, and noncommutativeincidenceRotaK-algebra
Äi with everyPi in

←
P , and how these algebras can be interpreted as discrete and

quantum topological spaces bearing a nonstandard topology, called theRota topol-
ogy, on their primitive spectra86 (Raptis and Zapatrin, 2000). They also showed,
in a way reminiscent of the Alexandrov–Cech construction of nerves associated
with locally finite open covers of manifolds, howthe Pi s may be also viewed as
simplicial complexes87 as well as, again by exploring a variant of Gel’fand duality,
how there is a contravariant functor between the categoryB of finitary substitutes
Pi and poset morphisms88 between them, and the categoryZ of the incidence al-
gebrasÄi , associated with thePi s and injective algebra homomorphisms between
them. Below, we would like to highlight three issues from the investigations in
Raptis and Zapatrin (2000):

1. Since theÄi s are objects dual to thePi s which, in turn, are discrete homo-
logical objects (i.e., finitary simplicial complexes) as mentioned above,
they (i.e., the incidence algebras) can be viewed asdiscrete differential
manifolds(Dimakiset al., 1995; Dimakis and Muller-Hoissen, 1994, 1999;
Zapatrin, 1996). Indeed, they were seen to be reticular spaces

Äi =
⊕
p∈Z+

Ä
p
i =

Ai︷︸︸︷
Ä0

i ⊕
Di︷ ︸︸ ︷

Ä1
i ⊕Ä2

i ⊕ . . . ≡ Ai ⊕ Di (106)

of Z+-gradedAi -bimodulesDi of (exterior) differential formsÄp
i (p ≥

1)89 related within eachÄi by nilpotent Cartan-Kahler-like (exterior) dif-
ferential operatorsdp

i : Äp
i → Ä

p+1
i .

85We will comment further on Gel’fand duality in the next section.
86That is, the sets of the incidence algebras” primitive ideals which, in turn, are kernels of irreducible

representations of theÄi s.
87See also (Zapatrin, 1996, in press) about this.
88Monotone maps continuous in the topology of thePi s.
89In (106),Ai ≡ Ä0

i is a commutative subalgebra ofÄi called the algebra of coordinate functions

in Äi while Di ≡ ⊕p≥1
i , a linear subspace ofÄi , calledthe module of differentials overAi . The

elements of each linear subspaceÄp
i of Äi in Di were seen to be discrete analogues of (exterior)

differential p-forms. We also note that in the sequel we will use the same boldface symbol “Ai ” and
“Di ” to denote the algebra of reticular coordinates and the module of discrete exterior differentials
over it as well as the finsheaves thereof.
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2. Since now theÄi s are seen to be structures encoding not only topological,
but also differential geometric information, it was intuited that an inverse—
or more accurately, since the incidence algebras are objects Gel’fand-
dual to Sorkin’s topological posets—a direct systemER = {Äi } of theÄi s
should yield, now at thedirect or inductive limitof infinite refinement of
theUi s as in (105), an algebraÄ∞ whose commutative subalgebra part
A∞ corresponds to(K)C∞(X)—the algebra of (K = R,C-valued) smooth
coordinates of the point-events ofX, whileÄp

∞ in D∞ to the(K)C∞(X)-
bimodules of smooth differentialp-forms cotangent at each and every
point-event of X which, in turn, can now be regarded as being a smooth
region of aC∞-manifold M .90 We will return to discuss further this limit
in subsection 4.2.

3. The aforesaid continuum limit was physically interpreted as Bohr’s corre-
spondence principle, in the following sense: the local (differential) struc-
ture of classicalC∞-smooth space-time should emerge at the physically
“ideal” (or operationally “nonpragmatic’) limit of infinite localization of
the alocal, discrete, and quantal algebraic substrataÄi .91

In the sequel, following Sorkin’s dramatic change of physical interpretation
of the locally finite posetsPi in (Sorkin, 1991) from finitary topological spaces

90In retrospect, and as we shall see in the sequel from an ADG-theoretic perspective, that initial
anticipation in (Raptis and Zapatrin, 2000, 2001)—that is, that at the inductive limit of infinite
localization of theÄi s one should recover the classical smooth structure of aC∞-manifold—was
wrong, or better, slightly misled by the classicalC∞-theory. In fact, as noted earlier, on the basis of
ADG results about inverse and direct limits of differential triads, we will argue subsequently that at
the continuum limit one recovers a smooth algebra structureKC∞(X) andKC∞(X)-bimodulesÄp

∞
of smoothp-forms over it, and that both of which may be regarded as “generalized,” albeit close,
relatives of the corresponding classicalC∞-ones. Thus, rather than directly anticipate that one should
obtain the local smooth structure of aC∞-manifold at the inductive limit of infinite refinement (of
the incidence algebras), perhaps it is more correct at this point just to emphasize that passing from
the poset to the incidence algebraic regime one catches a glimpse not only of the topological, but
also of the differential structure of discretized space-time. This essentially shows thatthe differential
operator—the heart and soul of differential geometry—comes straight from the algebraic structure.
Equivalently,incidence algebras provide us with a (reticular) differential geometric mechanism,
something that the “purely topological” finitary posets were unable to supply since they are merely
associative multiplication structures (i.e., arrow semigroups, or monoids, or even poset categories)
and not linear structures (i.e., one is not able to form differences of elements in them). This remark
will be of crucial importance subsequently when we will apply ADG-theoretic ideas to these discrete
differential algebras.

91For further remarks on this limiting procedure and its physical interpretation, the reader is referred
to (Mallios and Raptis, 2001, 2002; Raptis and Zapatrin, 2000, 2001; Zapatrin, 2001). We will return
to it in an ADG-theoretic context in the next subsection where, as noted above, we will show that
one does not actually get the classicalC∞-smooth structure at the continuum limit, but aC∞-smooth
one akin to it. We will also argue that this (i.e., that we do not get back theC∞-smooth space-time
manifold at the projective/inductive limit of our finitary structures) is actually welcome when viewed
from the ADG perspective of the present paper.
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to causal sets(causets)EPi (Bombelli et al., 1987),92 the corresponding reticular
and quantal topological spacesÄi , where similarly interpreted asquantum causal
sets(qausets)EÄi (Raptis, 2000).93 Qausets, like their causet counterparts, were
regarded as locally finite, causal, and quantal substrata underlying the classical
Lorentzian space-time manifold of macroscopic gravity.94 On the other hand, it
was realized rather early, almost ever since their inception in (Bombelliet al.,
1987; Sorkin, 1997), that causets are sound models of thekinematical structureof
(Lorentzian) space-time in the quantum deep, so that in order to address genuinely
dynamical issuesvis-à-vis quantum gravity, causet theory should also suggest a
dynamics for causets. Thus,how can one vary a locally finite poset? has become
the main question in the quest for a dynamics for causets95 (Raptis, 2002).

It was roughly at that point, when the need to develop a dynamics for causets
arose, that ADG entered the picture. In a nutshell, we intuited that a possible,
rather general answer to the question above, isby sheaf–theoretic means! in the
sense that the fundamentally algebraic methods of sheaf theory, as employed by
ADG, could be somehow used to model a realm of dynamically varying causets
or, preferably, due to a quantum theoresis of (local) causality and gravity that we
had in mind, of their qauset descendants.

However, to apply the concrete sheaf–theoretic ideas and techniques of ADG
to qausets, it was strongly felt that we should somehow marry first Sorkin’s original
finitary posets in (Sorkin, 1991) with sheaves proper. Thus,finitary space-time
sheaves(finsheaves) were defined as spacesSi of (algebras of) continuous functions
on Sorkin’sT0-posetsPi that were seen to belocally homeomorphicto each other
(Raptis, 2000b).96 The definition of finsheaves can be captured by the following

92For a thorough account of this semantic switch from posets as discrete topologies to posets as locally
finite causal spaces, the reader is referred to (Sorkin, 1995).

93The reader should note that, in accordance with our convention in (Mallios and Raptis, 2001, in
press; Raptis, 2000a), from now on all our constructions referring to reticularcausalstructures like
the EPi s and their associatedEÄi s, will bear a right-pointing arrow over them just to remind us of their
causal interpretation. (Such causal arrows should not be confused with the right-pointing arrows over
inductive systems.)

94That causality, as a partial order, determines not only the topology and differential structure of
the space-time manifold as alluded to above, but also its conformal Lorentzian metric structure of
(absolute) signature 2, has been repeatedly emphasized in (Bombelliet al., 1987; Sorkin, 1990, 1997,
manuscript in preparation).

95Rafael Sorkin in private correspondence.
96That is, one formally writesPi 3 UÀσi

πi
Si (U ) whereπi is the continuous projection map from the

sheaf spaceSi to the base topological posetPi ,σi its inverse (continuous local section) map andU an
open subset ofPi . In other words, for every openU in Pi : πi ◦ σi (U ) = UR,[∀U ∈ Pi : σi = π−1

i ]
(i.e.,σi is a local homeomorphism havingÄi for inverse) (Mallios, 1998; Raptis, 2000). Here we
symbolize these finsheaves bySi ≡ SPi .



P1: GMX

International Journal of Theoretical Physics [ijtp] pp937-ijtp-470300 September 26, 2003 16:31 Style file version May 30th, 2002

Finitary, Causal, and Quantal Vacuum Einstein Gravity 1527

commutative diagram which we borrow directly from Raptis (2000b)

X
fi → Pi

σ ≡ π−1 π−1
i ≡ σi

↓ ↓
C0

X →
f̂i

SPi

(107)

whereC0
X is the usual sheaf of germs of continuous functions onX, while fi and

f̂i are continuous surjections from the topological spacesX andC0
X to the finitary

topological spacesPi andSi , respectively.
Now, the diagram (107) above prompts us to mention that the complete anal-

ogy between Sorkin’s finitary topological posetsPi and finsheavesSi rests on the
result that an inverse system

←
S = (Si , º̂) of the latter was seen in (Raptis, 2000)

to possess a projective limit sheafS∞ ≡ SP∞97 that is homeomorphic toC0
X—the

sheaf of germs of sections of continuous functions on the topological space-time
manifold X. That is to say, similarly to (105), one formally writes,

lim←−
←
S ≡ lim

∞←i
Si ≡ S∞ homeo.' C0

X (108)

One could cast the result above as a limit of commutative diagrams like the one in
(107) which defines finsheaves, as follows:

Pi
π−1

i−→
σi

Si

fi j ↓ºi j º̂i j ↓ f̂i j

Pi

π−1
j−→
σ j

Sj

...
...

f j∞ ◦ fi j =: fi∞ ↓ºi∞ º̂i∞ ↓ f̂i∞ := f̂i∞ ◦ f̂i j

lim
∞←i

Pi ≡ P∞
homeo.' X

π−1−→
σ
C0

X

homeo.' S∞ ≡ lim∞ Si (109)

with fi j and f̂i j continuous injections—the “refinement” or “localization arrows’—
between thePi S in

←
P and theSi s in

←
S , respectively.98

97From (105),P∞'homeo. X
98These arrows capture precisely the partial order (or net) refinement relationsº andº̂ between the

finitary posets in
←
P and their corresponding finsheaves in

←
S respectively, as (109) depicts (e.g.,

we formally write: Pi
fi j−→ Pj ≡ Pi ºi j Pi ). Also from (109), one notices what we said earlier in

connection with (105) and (108), namely, thatX andC0
X are obtained at the categorical limit of

infinite (topological) refinement or localization (ºi∞ andº̂i∞) of thePi S and theSi S, respectively.
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Having finsheaves in hand, our next goal was to materialize ADG-theoretically
our general answer to Sorkin’s question mentioned above. The basic idea was the
following:

Since sheaves of (algebraic) objects of any kind may be regarded as universes of vari-
able objects (Mallios, 1998a; Mac Lane and Moerdijk, 1992), by (sheaf–theoretically)
localizing or “gauging” the incidence Rota algebras modelling qausets over the finitary
topological posetsPi or their locally finite causet descendantsEPi ,99 the resulting fin-
sheves would stand for worlds of variable qausets—ones varying dynamically under
the influence of a locally finite, causal, and quantal version of gravity in vacuo which,
in turn, could be concisely encoded in nonflat connections on those finsheaves (Mallios
and Raptis, 2001). Moreover, and this cannot be overempahasized here, by using the
rather universal shealf-theoretic constructions of ADG, we could carry virtually all the
usualC∞-differential geometric machinery on which the mathematical formulation of
general relativity rests, to the locally finite setting of finsheaves of qausets (Mallios
and Raptis, in press)—the principal differential geometric objects being, of course, the
aforesaid connections on the relevant finsheaves, which implement the dynamics of
qausets.

Thus, as a first step in this development, we set out to define (curved) prin-
cipal finsheavesEP↑i := −→

Aut EA i
≡ EΩ EPi

−→
Aut i EΩi of qausets, and their associated

finsheavesEΩ EPi
≡ EΩi , over a causetEPi .100 By establishing finitary versions of the

classical general relativistic principles of equivalence and locality, we realized
that the (local) structure (gauge) symmetries ofEΩi are finitary correspondents
of the orthochronous Lorentz Lie group (i.e., locally inEPi one writes formally:

99For instance, one could regardEPi as a topological space proper by assigning a “causal topol-
ogy” to it, as for example, by basing such a topology on “open” sets of the following kind:
I−(x) := {y ∈ EPi : y→ x}(∀x ∈ EPi ) (“lower” or “past-set topology’), or dually onI +(x) := {y ∈
EPi : x→ y} (“upper” or “future-set topology’), or even on a combination of both—i.e., on “open”
causal intervals of the following sort:A(x, y) := I +(x) ∩ I +(y) (the so-called Alexandroff topol-
ogy). It is one of the basic assumptions about the causets of Sorkinet al. that the cardinal-
ity of the Alexandroff setsA(x, y) is finite—the so-called local finiteness property of causets
(Bombelli et al., 1987). As basic open sets generating the three topologies above, one could
take the so-calledcovering past, covering future, and null Alexandroff“open” sets, respectively.
These areI −c (x){y ∈ EPi : (y→ x) ∧ (6 ∃z ∈ EPi : y→ z→ x)}, I +c (x){y ∈ EPi : (x→ y) ∧ (6 ∃z ∈
EPi : x→ z→ y)} andA0(x, y) = ∅R,(x→ y) ∧ (6 ∃z ∈ EPi : x→ z→ y) respectively. (Note: the
immediate arrowsin the Hasse diagram of any posetP appearing in the definition ofI −c , I +c , and
An(x, y) are calledcovering relationsor links and they correspond to the transitive reduction of
the partial order based at each vertex in the directed and transitive graph ofP. In turn, the three
topologies mentioned above can be obtained by taking the transitive closure of these links (Mallios
and Raptis, in press; Raptis, 2000a).)

100In what follows we will be often tempted to use the same epithet,principal, for both theEP↑i s and

their associatedEΩi s. We do hope that this slight abuse of language will not confuse the reader. As
we will see in the sequel, this identification essentially rests on our assuming a general Kleinian
stance towards (physical) geometry whereby “states” (of a physical system) and the “symmetry
group of transformations of those states” are regarded as being equivalent.



P1: GMX

International Journal of Theoretical Physics [ijtp] pp937-ijtp-470300 September 26, 2003 16:31 Style file version May 30th, 2002

Finitary, Causal, and Quantal Vacuum Einstein Gravity 1529

−→
Aut EA i

EÄ EPi
(U ) = SO(1, 3)↑i ),101 and that they could thus be organized into the

aforesaidGi -finsheavesEP↑i . Then, by definition, theEΩi s are the associated fin-
sheaves of the principalEP↑i s.

From the start we also realized that the localization or “gauging” of qausets
in the EP↑i S and their associatedEÄi s meant that these finsheaves could be endowed
with nontrivial (i.e., nonflat) reticular spin-Lorentzian connectionsEDi à la ADG.
Indeed, in complete analogy to the general ADG case, after having defined reticular
flat connections as the followingK -linear and sectionwise Leibniz condition (2)-
obeying finsheaf morphisms

Ed0
i ≡ E∂i : EΩ0

i ≡ EA i −→ EÄ1
i (110)

as in (1), as well as higher order extensions

Edp
i : EΩp

i −→ EΩ
p+1
i , (N 3 p ≥ 1) (111)

between the vector subsheavesEÄp
i of EÄi , we defined in Mallios and Raptis (2001)

nonflat connectionsEDi on the finsheavesEÄi of finite dimensional differential
EAi -bimodules EÄi

102 again as the followingK -linear and sectionwise Leibniz
condition-obeying (4) finsheaf morphisms

EDi : EEi ≡ EΩ∗i −→ EEi ⊗EA i
EΩi ≡ EΩi ( EEi ) (112)

similarly to (3).103 Moreover, in complete analogy to the local expression for the
abstractDs in (8), the finitaryEDi s were seen to split locally to

EDi = E∂i + EAi ,
(
EAi ∈ EÄ1

i (U ), U open inEPi

)
(113)

and the reticular gauge potentialsEAi of the EDi s above were readily seen to be−→
Aut i -valued local sections ofEÄ1

i (i.e., “discrete”so(1, 3)↑i ' sl(2,C)i -valued
local 1-forms),104 in analogy with both the classical and the abstract (ADG) theory.

101Where U is an open set inEPi regarded as a causal–topological space (see footnote 99 above).
102The reader should have gathered by now that in the stalks of the structure finsheavesEAi dwell the

(causal versionsEAi of the) abelian (sub)algebrasAi (of Äi ) in (106) while in the fibers ofEDi the
(causal versionsEDi of the)Ai -modulesDi in (106).

103The reader should note in connection with (112) that the “identification”EEi ≡ EΩ∗i tacitly assumes
that there is a (Lorentzian) metricEρi on the vector sheavesEEi effecting canonical isomorphisms
Ẽρ i between them and their dual differential module (covector) finsheavesEΩi , as in (12). We will
give more details aboutEρi and the implicit identification of the finitary vectors inEEi with their
corresponding forms inEΩi shortly. For the time being, we note that we would like to callEDi “ the
(f)initary, (c)ausal, and (q)uantal (v)acuum dynamo” (fcqv-dynamo) for a reason to be explained
in the next section.

104Of course, since theEÄi s are curved, they do not admit global sections (Mallios, 1998a; Mallios
and Raptis, 2001). In view of the name “fcqv-dynamo” we have given toEDi in the previous
footnote, its gauge potential partEAi may be fittingly coined afcqv-potential. The fcqv-potential,
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At this point, we must stress a couple of things about these finitary spin-
Lorentzian connectionsEDi vis-à-vis the general ADG theory presented in the
previous two sections.

1. About the base space. As it was mentioned in literature (Mallios and Raptis,
2001, manuscript in preparation; Raptis, 2000b), in our finitary regime
there are mild relaxations of the two basic conditions ofparacompactness
andHausdorffness(T2-ness) that ADG places on the base topological space
X on which the vector sheavesE bearing connectionsD are soldered. As
noted in footnote 84, the starting regionX of the topological space-time
manifoldM from which theEPi s (and their associatedEÄi s) come from was
assumed in (Sorkin, 1991) to berelatively compactand (at least)T1. If one
relaxes paracompactness to relative compactness, andT2-ness toT1-ness
(and we are indeed able to do so without any loss of generality),105 one is
still able to carry out in the locally finite regime the entire spectrum of the
ADG-theoretic constructions described in the last two sections.106

2. About the stalk: Lorentzian metric and its orthochronous symmetries. The
stalks of theEΩi s are occupied by qausetsEÄi ; in other words, they are the

like its abstract analogueω in (6)–(8), is ann× n-matrix of sections of local reticular 1-forms (i.e.,
EAi ≡ ( EAi

pq) ∈ Mi
n( EÄ1

i (U )),U open inEPi ). Also, since the local structure of the gauge groupGi of the
EÄi s is the reticular orthochronous Lorentz Lie algebraso(1, 3)↑i , we will denote the vector finsheaves
EEi above asEE↑i = ( EEi , Eρi ), in accord with our notation earlier for the (real) orthochronous Lorentzian

vector sheavesEE↑ = (E , ρ of rank 4 in the context of ADG. (However, to avoid uncontrollable
proliferation of symbols and eventual typographical congestion of indices, superscripts, etc., we
will not denote the dual spaceEÄi s of the EE↑i s by EÄ↑i .) Moreover, notice that, as it was mentioned in

Mallios and Raptis (2001), the “finitarity index i” onso(1, 3)↑i indicates that the Lie group manifold
SO(1, 3)↑ of (local) structure gauge symmetries of the qausets is also subjected to discretization
as well. It is reasonable to assume thatfinitary structures have finitary symmetriesor equivalently
and perhaps more popularly,discrete structures possess discrete symmetries. This is in accord with
our abiding to a Kleinian conception of (physical) geometry, as noted in footnote 100. On the other
hand, we shall see in the next section that the finitarity index indicates only that our structures are
“discrete” andnot that they are essentially dependent on the locally finite covering (gauge)Ui of
X. In fact, we will see that (from the dynamical perspective) our constructions areinherently gauge
Ui -independentand for this reason “alocal” (Mallios and Raptis, 2001; Raptis and Zapatrin, 2000,
2001). In other words, the (dynamical) role palyed by the base localization causetEPi and, in extenso,
by the regionX of the Lorentzian space-time manifold that the latter discretizes relative toUi , is
physically insignificant.

105In fact, as noted in both Raptis and Zapatrin (2000, 2001), at the finitary poset level one must
actually insist on relaxing Hausdorffness, because aT2-finitary substitute in (Sorkin, 1991) is
automatically trivial as a topological space—that is, it carries the discrete topology, or equivalently,
it is a completely disconnected set (no arrows between its point vertices).

106In fact, we could have directly started our finsheaf constructions straight from a paracompact and
HausdorffX without coming into conflict with Sorkin’s results. For instance, already in Mallios
and Raptis (in press) we applied the entire sheaf-cohomological panoply of ADG to our finsheaves
of qausets.
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spaces where the (germs of the) continuous local sections of theEΩi s take
values. These qausets, as it has been argued in (Mallios and Raptis, 2001),
determine a metricEρi of Lorentzian signature. Thus, as it was emphasized
in footnote 20 of subsection 2.2,Eρi is not carried by the base spaceEPi ,
which is simply a topological space; rather, it concerns directly the (objects
living in the stalks of the) relevant finsheavesper se. In fact, we may define
this metric to be the following finsheaf morphism:

Eρi : EE↑i ⊕ EE↑i −→ EA i (114)

which, like its abstract versionρ in (11), is EA i -bilinear between the (dif-
ferential) EA i -modules EΩi concerned and (sectionwise) symmetric.107 It
follows that theEA i -metric preserving (local) automorphism group finsheaf−→
Aut EA i

EE↑i |U∈ EPi
≡ −→
Aut Eρi

EEi |U∈ EPi
is the aforesaid principalEG-finsheaf

EP↑i (U ) ≡ −→
Aut Eρi

EEi (U ) ≡ SO(1, 3;EA i (U ))↑i of reticular orthochronous
isometries of the (real) Lorentzian finsheafEE↑i = ( EEi , Eρi ) of rank 4.108

Also, in accordance with Sorkinet al.’s remakr in (Bombelliet al.,
1987) that a (locally finite) partial order determines not only the topological
and the metric structure of the Lorentzian manifold of general relativity,
but also its differential structure, we witness here that the aforementioned
nilpotent Cartan-K¨ahler (exterior) differentialsEdρi , which as we saw in
(111) effect vector subsheaf morphismsEdρi : EΩp

i −→ EÄp+1
i (Z 3 p ≥ 0),

derive directly from the algebraic structure of theEΩi s—that is to say,
again straight from the stalk of the finsheaves of qausets without any
dependence on the base causetEPi which is simply a causal–topological
space. We cannot overemphasize this either:

Differentiability in our finitary scheme, and according to ADG, does not de-
pend on the base space (which is assumed to be simply a topological space);
the differential mechanism comes staright from the stalk (i.e., from the al-
gebraic objects dwelling in it) and, a fortiori, certainly not from a classical,
C∞-smooth base space-time manifold.

107In connection with footnote 103, we note that we tacitly assume thatEE↑i = ( EEi , Eρi ) in (114) is the

dual to EΩi (i.e., (EΩi = EE↑∗i = HomEA ( EE↑i , EAi )). It is also implicitly assumed thatEρi in (114) induces

a canonical isomorphism betweenEE↑i and its dualEΩi analogous to (12). Thus, with a certain abuse

of language, but hopefully without causing any confusion, we will assume thatEΩi ≡ EE↑i (i.e., we
identify via Eρi finitary covectors and vectors) and use them interchangeably in what follows.

108Since, as noted in footnote 18, specific dimensionaity arguments do not interest us here as long as
the algebras involved in the stalks of our finsheaves are (and they are indeed) finite dimensional,
the reader may feel free to choose an arbitrary, finite rankn for our finsheaves. Then, the reticular

LorentzianEA i -metricEρi involved will be of absolute signaturen− 2 (i.e.,Eρi = diag(−1,

n-1︷ ︸︸ ︷
+1,+1, . . .+ 1)) and

its local invariance (structure) group SO(1,n− 1; EAi (U ))↑ (U open inEPi , as usual).
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3. About the physical interpretation. We would like to comment a bit on
the physical interpretation of our principal finsheaves of qausets and the
reticular spin-Lorentzian connections on them. First we must note that
Sorkin et al., after the significant change in physical interpretation of
the locally finite posets involved from topological in (Sorkin, 1991) to
causal in (Bombelliet al., 1987; Sorkin, 1990, 1995, 1997, manuscript in
preparation) alluded to above, insisted that, while the topological posets
can be interpreted as coarse approximations to the continuous space-time
manifold of macroscopic physics, the causets should be regarded as being
truly fundamental structures in the sense that the macroscopic Lorentzian
manifold of general relativity is an approximation to the deep locally finite
causal order, not the other way around.

Our scheme strikes a certain balance between these two poles. For
instance, while we assume a base causet on which we solder our inci-
dence algebras modelling qausets, that causet is also assumed to carry a
certain topology—the “causal topology”109—so that it can serve as the
background topological space on which to solder our algebraic struc-
tures, which in turn enables us to apply ADG to them thus unveil po-
tent differential geometric traits of the qausets in the stalks, as described
above. This causal topology however, in contradistinction to Sorkin’sT0-
topological posets which modelthickened space-like hypersurfacesin con-
tinuous space-time (Sorkin, 1991), is regarded as a theory of “thickened”
causal regions in space-time (Mallios and Raptis, 2001; Raptis, 2000a;
Raptis and Zapatrin, 2001).110 Furthermore, as it has been emphasized
in (Mallios and Raptis, 2001), while the nonflat reticular spin-Lorentzian
connectionsEDi on the correspondingEΩi s can be interpreted as the funda-
mental operators encoding thecurving of quantum causalitythus setting
the kinematics for a dynamically variable quantum causality, an inverse
system

←
G := {( EP↑i , EDi )} was intuited to “converge” at the operationally

ideal (i.e., nonpragmatic and “classical” in Bohr’s “correspondence prin-
ciple” sense (Raptis and Zapatrin, 2000)) limit of infinite refinement or
localization of both the base causets and the associated qauset fibers over
them to the classical principal fiber bundle (P↑,D) of continuous local or-
thochronous Lorentz symmetriesso(1, 3)↑ of theC∞-smooth space-time
manifoldM of general relativity and thesl(2,C)-valued spin-Lorentizian
gravitational connectionD on it.111 Since (P↑,D) is the gauge-theoretic

109See footnote 99.
110For more on this, see subsection 4.3 below.
111For more technical details about the projective limit of

←
G , the reader must wait until the following

subsection. At this point it must be stressed up front, in connection with footnote 78, that what we
actually get at the projective limit of

←
G is aC∞-smooth principal bundle (and its spin-Lorentzian

connection) over the regionX of a “generalized differential manifold” (i.e.,C∞-smooth)M .
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version of the kinematical structure of general relativity—the dynamical
theory of the classical field of local causalitygµν ,112 each individual mem-
ber (EP↑i , EDi ) of the inverse system

←
G was interpreted as the kinematics of a

locally finite, causal, and quantal version of (vacuum) Einstein-Lorentzian
gravity.113 In toto, we have amalgamated aspects from the interpretation
of both the finitary substitutes and the causets, as follows:114

“Coarse causal regions” are truly fundamental, operationally sound, and phys-
ically pragmatic, while the classical pointedC∞-smooth space-time manifold
ideal.115 Curved finsheaves of qausets (EP↑i ≡ EE↑i , EDi ) model the kinematics
of dynamical (local) quantum causality in vacuo as the latter is encoded in
thefcqv-dynamo EDi . A generalized (i.e.,C

∞
-smooth) version of the classi-

cal kinematical structure of general relativity, (P↑,D), over the differential
space-time manifoldM , arises at the ideal and classical (Bohr’s correspon-
dence) limit of infinite localization of the qausets—in point of fact, ofG.116

4. About “reticular” differential geometry. The basic moral of our appli-
cation of ADG to the finitary regime as originally seen in Mallios and
Raptis (2001) as well as here, but most evidently in Mallios and Raptis (in
press), is that the fundamental differential mechanism which is inherent
in the differential geometry that we all are familiar with117 is indepen-
dent ofC∞-smoothness so that it can be applied in full to our inherently
reticular modeles, or equally surprisingly, to spaces that appear to be ul-

112For recall that the spacetime metricgµν (x), for everyx ∈ M , delimits a Minkowski lightcone based
atx (by the equivalence principle, the curved gravitational space-time manifold of general relativity
is, locally, Minkowski space, i.e., flat, and in this sense general relativity may be viewed as special
relativity being localized or “gauged’). Thus, the Einstein equations of general relativity, which
describe the dynamics ofgµν (which, in turn, can be interpreted as the field of the 10 gravitational
potentials), effectively describe the dynamical change of (the field of) local causality. All this was
analyzed in detail in Mallios and Raptis (2001).

113As we shall see in the next section, the actual kinematical configuration space for the locally finite,
causal, and quantal vacuum Einstein gravity is the moduli spaceEAi of finitary spin-Lorentzian
connectionsEDi . As we shall see, projective limit arguments also apply to an inverse system of such
reticular moduli spaces.

114Further distillation and elaboration on these ideas, see subsection 4.3.
115More remarks on “coarse causal regions” will be made in subsection 4.3.
116This is a concise r´esumé of a series of papers (Mallios and Raptis, 2001, in press; Raptis, 2002;

Raptis and Zapatrin, 2000, 2001; Mallios, 1998b). Of course, “infinite localization” requires “infinite
microscopic power” (i.e., energy of determination or “measurement” of locution) which is certainly
an ideal (i.e., operationally nonpragmatic and physically unattainable) requirement. This seems to
be in accord with the pragmatic cutoffs of quantum field theory and the fundamental lengthLP (the
Planck length) that the “true” quantum gravity is expected to posit (and below which it is expected
to be valid), for it is fairly accepted now that one cannot determine the locus of a quantum particle
with uncertainty (error) less thanLP ≈ 10−35 m without creating a black hole. This seems to be the
raison d’être of all the so-called “discrete” approaches to quantum space-time and gravity (Mallios
and Raptis, 2001).

117Albeit, just from the classical (i.e.,C∞-smooth) perspective.
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trasingular and incurably pathological or problematic when viewed from
the differential manifold’s viewpoint (Mallios and Rosinger, 1999, 2001;
Rosinger, in press). In our case, what is startling indeed is that none of the
usual “discrete differential mathematics” (e.g., difference calculus, finite
elements, or other related Regge calculus-type of methods) is needed to
address issues of differentiability and to develop a full-fledged differen-
tial geometry in a (locally) finite setting. For instance, there appears to
be no need for defining up-front “discrete differential manifolds” and for
developing a priori and, admittedly, in a physically rather ad hoc manner
a “discrete differential geometry” on them118 in order to investigate differ-
ential geometric properties of “finitary” (ordered) spaces.119 For they too
can be cast under the wider axiomatic, algebraico–sheaf–theoretic prism
of ADG as a particular application of the general theory. All in all, it
is quite surprising indeed that the basic objects of the usual differential
geometry like “tangent” vectors (derivations), their dual forms, exterior
derivatives, Laplacians, volume forms, etc., carry through to the locally
finite scene and none of their discrete (difference calculus’) analogues is
needed, but this precisely proves the point:

One feels, perhaps “instinctively” due to one’s long-time familiarity with
and the numerous “habitual” (but quite successful!) applications of the usual
smooth calculus where the differential mechanism comes from the supporting
space (i.e., it is provided by the algebraC∞(M) of infinitely differentiable
functions on the differential manifoldM), that in the “discrete” case too some
novel kind of “discrete differential geometry” must come from a “discrete dif-
ferential manifold’-type of base space—as ifthe differential calculus follows
from, or at least that it must be tailor-cut to suit, space. In other words, in
our basic working philosophy we have been misled by the habitual applica-
tions and the numerous successes of the smooth continuum into thinking that
differentiability comes from, or that it is somehow vitally dependent on, the
supporting space. By the present application of ADG to our reticular models
we have witnessed how, quite on the contrary,differentiability comes from the
stalk—i.e., from algebras dwelling in the fibers of the relevant finsheaves—
and it has nothing to do with the ambient space, which only serves as an
auxiliary, and in no way contributing to the said differential mechanism,
topological sapce for the sheaf–theoretic localization of those algebraic ob-
jects. The usual differential geometric concepts, objects, and mechanism that
relates that latter still apply in our reticular environment and, perhaps more
importantly, in spite of it.

118Like, e.g., the perspective adopted in the literature (Baehret al., 1995; Dimakiset al., 1995; Dimakis
and Muller-Hoissen, 1994, 1999).

119Like graphs (directed, like our posets here, or undirected), or even finite structureless sets.
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4.2. Projective Limits of Inverse Systems of Principal Lorentzian Finsheaves

Continuous limits of finitary simplicial complexes and their associated inci-
dence algebras, regarded as discrete and quantal topological spaces (Raptis and
Zapatrin, 2000, 2001), have been studied recently in the literature (Zapatrin, 2001,
in press). In this subsection, always on the basis of ADG, we present the pro-
jective limit of the inverse system

←−
G = {( EP↑i , ED↑i )} of principal Lorentzian fin-

sheaves of qausetsEP↑i equipped with reticular spin-Lorentzian connectionsED↑i
which was supposed in Mallios and Raptis (2001) to yield the classical kinemati-
cal structure of general relativity in its gauge-theoretic guise—that is, the princi-
pal orthochronous spin-Lorentzian bundle over the (regionX of the)C∞-smooth
space-time manifoldM of general relativity locally supporting ansl(2,C)-valued
(self-dual) smooth connection (i.e., gauge potential) 1-formA(+). We center our
study on certain results from a recent categorical account of projective and in-
ductive limits in the categoryDT of Mallios’ differential triads in the literature
(Papatriantafillou, 2000, 2001), as well as on results from a treatment of projective
systems of principal sheaves (and their associated vector sheaves) endowed with
Mallios’ A-connections in the literature (Vassiliou, 1994, 1999, 2000). Then, we
compare this inverse limit result, at least at a conceptual level and in a way that
emphasizes the calculus-free methods and philosophy of ADG, with the projec-
tive limit of a projective family

←−
M of compact Hausdorff differntial manifolds

employed in Ashtekar and Lewandowski (1995) to endow the moduli spaceA/G
of gauge-equivalent nonabelian Y-M and gravitational connections with a differen-
tial geometric structure. In fact, we will maintain that an inverse system

←−
M of our

finitary moduli spaces should yield at the projective limit of infinite localization
a generalized version (i.e., aC∞-smooth one) of the classical moduli spaceA(+)

∞
of gauge-equivalent (self-dual)C∞-connections on the regionX of the smooth
space-time manifoldM .

The concept pillar on which ADG stands is that of adifferential triadT =
(A, ∂, Ω) associated with aK = R, C-algebraized space (X, A). In ADG, differ-
ential traids specialize to abstract differential spaces, while theAs in them stand
for (structure sheaves of)abstract differential algebras of generalized smooth or
differentiable coordinate functions, and they were originally born essentially out
of realizing that

the classical differential geometry of a manifoldX is deduced from its structure sheaf
C∞X , the latter being for the case at issue the result of the very topological properties120

of the underlying “smooth” manifoldX.

Thus, in effect, the first author originally, and actually quite independently of
any previous relevant work, intuited, built, and subsequently capitalized on the
fact that the algebra sheafA of generalized arithmetics (or abstract coordinates) is

120Poincaré lemma (Mallios and Raptis, in press; Mallios and Rosinger, 1999).
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precisely the structure that provides one with all the basic differential operators and
associated “intrinsic differential mechanism” one needs to actually do differential
geometry—the classical,C∞-smooth, theory being obtained precisely when one
choosesC∞M as one’s structure sheaf of coordinates.121 Thus, the objects dwelling
in the stalks ofA may be perceived asalgebras of generalized (or abstract) “in-
finitely differentiable” (or “smooth”) functions, with the differential geometric
character of the base localization spaceX left completely undetermined—in fact,
it is regarded as being totally irrelevant to ADG.122

In Papatriantafillou (2000), the differential triads of ADG were seen to con-
stitute a categoryDT—the category of differential triads. Objects inDT are
differential triads and morphisms between them represent abstract differentiable
maps. InDT one is also able to form finite products and, unlike the category
of smooth manifolds where an arbitrary subset of a (smooth) manifold is not a
(smooth) manifold, one can show that every objectT in DT has canonical sub-
objects (Papatriantafillou, 2000). More importantly however, in Papatriantafillou
(2001) it was shown thatDT is complete with respect to taking projective and
inductive limits of projective and inductive systems of triads, respectively.123 This
is a characteristic difference betweenDT and the category of manifolds where the

121Yet, we can still note herewith that the first author arrived at the notion of adifferential triadas a
particularization to the basic differentials of the classical theory of the amply ascertained throughout
the same theory instrumental role played by the notion of anA(≡ C∞X )-connection (i.e., covariant
differentiation).

122Of course, as also noted earlier in footnote 67, in the classical case (i.e., when one identifies
AM ≡ C∞M ) there is a confusion of the sort “who came first the chick or the egg?,” since one to
identify the underlying space(time) (i.e., theC∞-smooth manifoldM) with its structure sheafC∞M of
smooth functions and, more often than not, one is (mis)led into thinking thatdifferentiability—the
intrinsic mechanism of differential geometryso to speak—comes (uniquely) from the underlying
smooth manifold. This is precisely what ADG highlighted:differentiability comes in fact from the
structure sheaf, so that if one chooses “suitable” or “appropriate” (to the problem one chooses
to address) algebras of “generalized smooth” functions other thanC∞(M), one is still able to do
differential geometry (albeit, of a generalized or abstract sort) in spite of the classical,C∞-smooth
base manifold.

123In fact, Papatriantafillou showed that projective/inductive systems of differential triads having ei-
ther a common, fixed base topological spaceX (write Ti (X)), or a projective/inductive system
thereof indexed by the same set of indices (writeTi (Xi )), possess projective/inductive limits. Be-

low, we will see that our projective/inductive system
−→
G = {( EP↑i , EDi )} of finitary posets (causets;

principal) finsheaves of incidence algebras (qausets) over them and reticular spin-Lorentzian con-
nections on those finsheaves, are precisely of the second kind. The reader should also note here
that in the mathematics literature, “projective,” “inverse” and “categorical” limits are synonymous
terms; so are “inductive” and “direct” limits (also known as “categorical colimits’). The result from
Papatriantafillou (2001) quoted above can be stated as follows:the categoryDT is complete and
cocomplete. This remark, that is to say, thatDT is (co)complete will prove to be of great importance
in current research (Raptis, 2002) for showing that the category of finsheaves of qausets—which
is a subcategory ofDT—is, in fact, an example of a structure known as atopos(Mac Lane and
Moerdijk, 1992)—a topos with a non-Boolean (intuitionistic) internal logic, tailor-made to suit the
finitary, causal, and quantal vacuum Einstein–Lorentzian gravity developed in the present paper.
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projective limit of an inverse system of manifolds is not, in general, a manifold.124

Moreover, Vassiliou, by applying ADG-theoretic ideas to principal sheaves (whose
associated sheaves are precisely the vector sheaves of ADG) Vassiliou (1994, 1999,
2000), has shown that when the flat differentials∂̇ of the triads in the aforesaid
projective/inductive systems of Papatriantafillou are promoted (i.e., “gauged” or
“curved”) to A-connectionsḊ on principal sheaves, the corresponding projec-
tive/inductive systems (Pi , Ḋi )125 have principal sheaves endowed with nonflat
connections as inverse/direct limits.

Thus, in our locally finite case, the tripletETi ( EAEPi
≡ EA i , EDEPi

≡ EDi , Edp
i ) is an

ADG-theoretic differential triad of a (f)initary, (c)ausal, and (q)uantal kind. In
other words, the categoryDTfcq having for objects the differential triadsETi and
for arrows the finitary analogues of the triad-morphisms mentioned above is a
subcategory ofDT calledthe category of fcq-differential triads. So, we let

¿
T :=

{ETi }be themixed projective–inductivesystem of fcq-differential triads inDTfcq.126

By straightforwardly applying Papatriantafillou’s results (Papatriantafillou, 2000,
2001) to the inversedirect system

¿
T, we obtain a projective–inductive limit triad

T∞ = (A ≡(K) C∞X , Ωp
∞, dp

∞) (write: T∞ =
−→
lim←−

¿
T ≡

i→∞
lim
∞←i
{ETi }) here called “C∞-

smooth differential triad,” consisting of the structure sheafC∞X of generalized
infinitely differentiable (i.e.,C∞-smooth) functions onX, as well as of (sheaves

124From a categorical point of view, this fact alone suffices for regarding the abstract differential spaces
(of structure sheaves of generalized differential algebras of functions and differential modules over
them) that the ADG-theoretic differential triads represent as being more powerful and versatile
differential geometric objects thanC∞-manifolds. As also mentioned in Papatriantafillou (2001), it
was precisely due to the aforesaid shortcomings of the category of smooth manifolds that led many
authors in the past to generalize differential manifolds todifferential spacesin which the manifold
structure is effectively redundant (Heller and Sasin, 1995; Mostow, 1979; Sikorski, 1967, 1971).
In fact, the first author’s differential triads generalize bothC∞-manifolds and differential spaces,
and, perhaps more importantly for the physical applications, they are general enough to include
nonsmooth (“singular”) spaces with the most general, nonfunctional, structure sheaves (Mallios
and Rosinger, 1999, 2001; Rosinger, in press). On the other hand, a little bit later we will allude
to and, based on ADG and its finitary application herein, comment on an example from (Ashtekar
and Lewandowski, 1995) of an inverse system of differential manifolds that yields a differential
manifold at the projective limit.

125With (I, ≥) a partially ordered, directed set (net) of indices “i” labelling the elements of the
inverse/direct system (Pi , Ḋi ). The systems (Pi , Ḋi ) are said to be (co)final with respect to the
index net (I, ≥). We remind the reader that in our case “i” is the finitarity or localization index
(i.e., locally finite open coversUi of X ⊂ M form a net (Mallios and Raptis, 2001, in press; Raptis,
2000b; Sorkin, 1991)).

126The term “mixed projective-indcutive” (or equivalently, “mixed inverse-direct’) system pertains to

the fact that the family
¿
T (implicitly) contains both the projective system

←−
P = { EPi } of reticular

base causets, and the inductive system
−→
R of qausets corresponding (by Gel’fand duality) to the

aforesaid causets. (Note that we refrain from putting right-pointing causal arrows over
←−
P and

−→
R,

to avoid notational confusion.)
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Ωp
∞ over X of) (K)C∞(X)-bimodulesÄp

∞ of K-valued differential forms related
by exterior differentials (K -linear sheaf morphisms)dp

∞.
We can then localize or gauge the Cartan–K¨ahler differentials of the fcq-

differential triads inDT f cq as worked out in Mallios and Raptis (2001), thus

obtain the inverse system
←−
G = {( EP↑i , EDi )} alluded to above.127 As mentioned ear-

lier, the limits of projective systems of principal sheaves equipped with Mallios
A-connections have been established in (Vassiliou, 1994, 1999, 2000). Hence, by
straightforwardly carrying Vassiliou’s results to the finitary case, and as it was

anticipated in (Mallios and Raptis, 2001, in press), we get that
←−
G yields at the

projective limit a generalized classical principalC∞-smooth (spin-Lorentzian)
fiber bundle (whose associated bundle is theC∞-smooth (co)tangent vector bun-
dle ofKC∞(X)-modules ofK-valued differential forms) endowed with asmooth
so(1, 3)↑-valued connection 1-formA over a (regionX of) theC∞-smooth space-
time manifold M128 (Mallios and Raptis, 2001, in press). All in all, we formally
write

T∞ =
(
AX ≡ KC∞X , Ωp

∞, dp
∞
) = −→lim←− ¿T ≡ i→∞

lim
∞←i
{ETi } ≡

i→∞
lim
∞←i

{(
EA i , EDi , Edp

i

)}
(

(K) EP∞, (K)D∞
)
= lim←−

←−
G ≡ lim

∞←i
{( EP↑i , EDi )} (115)

and diagrammatically one can depict these limiting procedures as follows:

ETi
gauging

E∂i−→ EDi=E∂i+ EAi
→ ( EP↑i , EDi )

injective tri- ad morphism injectiveGi -fin- sheaf morphism↓ ↓
ET j

gauging
E∂ j−→ ED j=E∂ j+ EA j

→ ( EP↑j , ED j )
...

...

infinite refinement infinite refinement↓ ↓
T∞ =

−→
lim←−

¿
T

guaging
∂∞−→D∞=∂∞+A∞→

(
(K)P↑∞, (K)D∞

)
= lim
∞←i

←−
G

(116)

127We could have chosen to present the collection{( EP↑i , EDi )} as an inductive family of principal

finsheaves and their finitary connections, since the connections (of any orderp) EDp
i in each of its

terms are effectively obtained by localizing or gauging the reticular differentialsEdp
i in each term

of
−→
R. However, that we present

←−
G dually, as an inverse system, is consistent with our previous

work (Mallios and Raptis, 2001, in press) and, as we shall see shortly, it yields the same result at
the continuum limit (i.e., theC

∞
-principal bundle).

128Write ((K) P∞,(K)D∞) for the C
∞

-smooth principal bundle and its nontrivial spin-Lorentzian
connection.
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4.2.1. A Brief Note on Projective Versus Inductive Limits

We mentioned earlier the categorical duality between the categoryB of fini-
tary substitutesPi and poset morphisms between them, and the categoryZ of the
incidence algebrasÄi associated with thePi s and injective algebra homomor-
phisms between them, which duality is ultimately rooted in the general notion of
Gel’fand duality.129 In a topological context, the idea to substitute Sorkin’s finitary
topological posets by incidence Rota algebras was originally aimed atalgebraiz-
ing space(Zapatrin, 1998)—that is to say, at replacing “space” (of which, anyway,
we have no physical experience130) by suitable (algebraic) objects that may be
perceived as living on that “space” and, more importantly, from which objects this
“space” may be somehow derived by an appropriate procedure (Gel’fand spatial-
ization). In fact, as briefly described before, again in a topological context and in
the same spirit of Gel’fand duality, the second author substituted Sorkin’sPi s by
finsheavesSi of (algebras of) continuous functions that, as we said, are (locally)
topologically equivalent (i.e., locally homeomorphic) spaces to thePi s (Raptis,
2000). Here too, the basic idea was, in an operational spirit, to replace “space” by
suitable algebraic objects that live on “it,’ and it was observed that the maximum
localization (finest resolution) of the point events of the bounded regionX of the
C0-space-time manifold M by coarse, open regions about them at the inverse limit
of a projective system ofPi s, corresponds (by Gel’fand duality) to definnig the
stalks ofC0

X—the sheaf of (germs of) continuous functions on the topological man-
ifold X—at thedirect limit of (infinite localization of)an inductive system of the
Si s.131 At the end of Raptis (2000b) it was intuited that if the stalks of theSi s were
assumed to be inhabited by incidence algebras which are discrete differential man-
ifolds as explained above. at the inverse limit of infinite refinement or localization
of the projective system

←
P of Sorkin’s topological posets yielding the continuous

base topological spaceX, the corresponding (by Gel’fand duality) inverse-direct
system

¿
T of finitary differential triads should yield the classical structure sheaf

AX ≡(C) C∞X of germs of sections of (complex-valued)132 smooth functions onX
and the sheafCΩX of (C)C∞(X)-bimodules of (complex) differential forms, in
accordance with Gel’fand duality.

There are two issues to be brought up here about this intuition at the end of
Raptis (2000b). First thing to mention is that, as alluded to earlier, it is more accurate
to say that, since the incidence algebras are objects categorically or Gel’fand dual
to Sorkin’s topological posets, and since the latter form an inverse or projective

129See our more analytical comments on Gel’fand duality in the next section.
130Again, see more analytical comments on the “unphysicality” of space(time) in the next section.
131And it should be emphasized that the stalks of a sheaf are the “ultra-local” (i.e., maximally localized)

point-like elements of the sheaf space (Mallios, 1998a; Raptis, 2000b).
132In (Mallios and Raptis, 2001; Raptis, 2000a,b; Raptis and Zapatrin, 2000, 2001) it was tacitly

assumed that we were considering incidence algebras over the fieldC of complex numbers.
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system
←
P , the former should be thought of as constituting a direct or inductive

system ER of algebras possessingKC∞(X) and (K)Ä(X) over it as aninductive
limit.133 In fact, as mentioned in the previous paragraph, the stalks of(K)ÄX (in
fact, of any sheaf (Raptis, 2000b)), which are inhabited by germs of sections of
C∞-smooth (K = R, C-valued) differential forms, are obtained precisely at that
inductive limit. We may distill all this to the following physical statement which
foreshadows our remarks on Gel’fand duality to be presented in the next section:

While “space (time)” is maximally (infinitely) localized (to its points) by an inverse
limit of a projective system of Sorkin’s finitary posets, the (algebraic) objects that live
on space(time) (i.e., the various physical fields) are maximally (infinitely) localized in
the stalks of the finsheaves that they constitute by a direct limit of an inductive system
of those finsheaves. Equivalently stated, “space(time)” is categorically or Gel’fand dual
to the physical fields that are defined on “it.”

The second thing that should be stressed here, and in connection with foot-
note 78, is that we do not actually get the classical differential geometric structure
sheafKC∞X and the corresponding sheafKΩX of KΩ∞(X)-modules of differen-
tial forms. In toto, we do not actually recover the classicalC∞-smooth differ-
ential triadT∞ := (AX ≡K C∞X , ∂, Ω1

X) at the limit of infinite localization of the

system
¿
T, but rather we get thegeneralized smooth(i.e., what we call hereC∞-

smooth) triad T∞ = (AX ≡ KC∞X , Ωp
∞, dp

∞). Of course, by the general theory
(i.e., ADG), we are guaranteed that the direct, cofinal system

¿
T of “generalized

discrete differential spaces’—that is, the fcq-triadsETi = ( EA i , EDi , Edp
i )—yields a

well-defined differential structure at the categorical colimit withinDT; moreover,
according to ADG, it is quite irrelevant whether the differential triad at the limit
is the classical smoothT∞ of the featurelessC∞-manifold proper or one for ex-
ample that is infested by singularities thus most pathological and unmanageable
when viewed from the classicalC∞-manifold perspective (Mallios and Rosinger,
1999, 2001; Rosinger, 2002).134 The point we make here is simply that at the
continuum limit we geta, not the familiar C∞-smooth, differential structure on
the continuous topological (C0) space-time manifoldX. This differential structure
“for all practical purposes” represents for us the classical, albeit “generalized,”
differential manifold, and the direct limiting procedure that recovers it a general-
ized version of Bohr’s correspondence principle advocated in Raptis and Zapatrin
(2000). That this differential structure obtained at the “classical limit” is indeed
adequate for accommodating the classical theory will become transparent in the
next section where we will see that on the basis ofT∞ we can actually write the
classical vacuum Einstein equations of general relativity; albeit, in a generalized,

133Hence, precisely speaking, the aforesaid fcq-differential triads constitute a mixed inverse-direct

system
¿
T having theC

∞
-smooth differential triadT∞ as an inductive limit (Papatriantafillou,

2000, 2001).
134See footnote 124.
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ADG-theoretic wayindependently of the usualC∞-manifold. In fact, we will see
that these equations are obtained at the inverse limit of a projective system

←
E of

vacuum Einstein equations—one for each member of
¿
T.

4.2.2. Some Comments on Real Versus Complex Space-Time and the General use
of the Number FieldsR andC

As it has been already anticipated in (Mallios and Raptis, 2001; Raptis, 2002),
starting from principal finsheaves ofcomplex(K = C) incidence algebras carry-
ing nonflat reticular spin-LorentzianEA i -connectionsEDi asC-linear finsheaf mor-
phisms between the “discrete” differentialEA i -bimodulesEΩp

i (p ≥ 1) in EDi , com-
plex (bundles of) smooth coordinate algebras, modules of differential forms over
them135 and smoothso(1, 3)↑C-valued connection 1-formsA (over a smooth com-
plex manifold) are expected to emerge at the inductive–projective limit of infinite
refinement and localization of the qausets and the principal finsheaves thereof.136

Thus it may be inferred that to recover the real space-time continuum of macro-
scopic relativistic gravity (general relativity), some sort ofreality conditionsmust
be imposed after the projective limit, the technical details of which have not been
fully investigated yet (Zapatrin, 2001, in press). The nature of these conditions is
a highly nontrivial and subtle issue in current quantum gravity research (Baez and
Muniain, 1994).

On the other hand, starting from incidence algebras overR (K = R), one
should be able to recover areal C∞-smooth manifold instead of a complex one
at the projective/inductive classical limit,” but then one would not be faithful to
the conventional quantum theory with its continuous coherent superpositions over
C.137 On the other hand, prima facie it appears to be begging the question to main-
tain that we have an “innately” or “intrinsically finitistic” model for the kinematical
structure of Lorentzian quantum space-time and gravity (and, as we shall contend
in the following section, also for the dynamics) when its (noncommutative) alge-
braic representation employs ab initio the continuum of complex numbers as the
field of (probability) amplitudes.

135That is to say, the generalized “classical,”C
∞

-smooth differential triadT∞ mentioned above.
136Indeed, in the context of nonperturbative (canonical) quantum gravity using Ashtekar’s new gravita-

tional connection variables, we will see in the next section how a holomorphic Lorentzian space-time
manifold and smooth, complex (self-dual) connections on it are the basic dynamical elements of
the theory.

137And indeed, in the literature (Mallios and Raptis, in press; Raptis, 2000a; Raptis and Zapatrin, 2001)
theC-linear combinations of elements of the incidence algebras where physically interpreted as
coherent quantum superpositionsof the causal–topological arrow connections between the event
vertices in the corresponding causets. In fact, it is precisely thisC-linear structure of the qausets that
qualifies them as soundquantumalgebraic analogues of causets, which are just associative multi-
plication structures (arrow semigroups or monoids or even poset categories). Also, in connection
with footnote 90, we emphasize that it is the linear structure of qausets (prominently absent from
causets) that gives them both their differential (geometric) and their quantum character.
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For example, in the light of application of ideas from presheaves and topos
theory to quantum gravity, Butterfield and Isham (2000), and more recently (Isham,
2002), have also explicitly doubted and criticized the a priori assumption and use of
the continuum of either the reals or, a fortiori, of the complexes in quantum theory
vis-à-vis the quest for a genuinely quantum theoresis of space-time structure and
gravity. In Isham (2002) in particular, Isham maintains that the use of the arithmetic
continua ofR (modelling probabilities and the values of physical quantities) and
C (probability amplitudes) in standard quantum mechanics is intimately related
(in fact, ultimately due) to the a priori assumption of a classical stance against
the “nature” of space and time—i.e., the assumption of the classical space-time
continuum. In the sequel, to make clear-cut remarks on this in relation to ADG,
as well as to avoid as much as we can “vague dark apostrophes,” by “space-time
continuum” we understand the locally Euclidean arena (i.e., the manifold) that
(macroscopic) physics uses up front to model space-time. Our contention then is
thatIsham questions the use ofR andC in quantum theory precisely because he is
motivated by the quest for a genuinely quantum theoresis of space-time and gravity,
for in quantum gravity research it has long been maintained that the classical
space-time continuum (i.e., the manifold) must be abandoned in the sub-Planckian
regime where quantum gravitational effects are expected to be significant.138 Thus,
his basic feeling is that the conventional quantum theory, with its continuous
superpositions overC and probabilities inR, which it basically inherits from the
classical space-time manifold, must be modified vis-`a-vis quantum gravity.In toto,
if the manifold has to go in the quantum deep, so must the number fieldsR andC of
the usual quantum mechanics, with a concomitant relatively drastic modification
of the usual quantum formalism to suit the non-continuum base space (time).139

Perhaps the use from the beginning of one of the finite number fieldsZp
140 for

c-numbers would be a more suitable choice for our reticular models, but then
again, what kind of quantum theory can one make out of them (Chris Isham in
private communication)? The contents of this paragraph are captured nicely by the
following excerpt from Isham (2002):

. . .These number systems [i.e.,R andC] have a variety of relevant mathematical prop-
erties, but the one of particular interest here is that they are continua, by which—in
the present context—is meant not only thatR andC have the appropriate cardinality,
but also that they come equipped with the familiar topology and differential structure
that makes them manifolds of real dimension one and two respectively. My concern is
that the use of these numbers may be problematic in the context of a quantum gravity
theory whose underlying notion of space and time is different from that of a smooth
manifold. The danger is that by imposing a continuum structure in the quantum theory

138For instance, see the two opening quotations.
139See below.
140With “ p” a prime integer.
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a priori, one may be creating a theoretical system that is fundamentally unsuitable for
the incorporation of spatio-temporal concepts of a non-continuum nature: this would be
the theoretical-physics analogue of what a philosopher might call a “category error’. . .

while, 2 years earlier (Butterfield and Isham, 2000), Butterfield and Isham made
even more sweeping remarks about the use of smooth manifolds in physics in
general, and their inappropriateness vis-`a-vis quantum gravity:

. . . the first point to recognise is of course that the whole edifice of physics, both classical
and quantum, depends upon applying calculus and its higher developments (for example,
functional analysis and differential geometry) to the values of physical quantities. . .why
should space be modelled usingR? More specifically, we ask, in the light of [our
remarks above about the use of the continuum of the real numbers as the values of
physical quantities]: Can any reason be given apart from the (admittedly, immense)
“instrumental utility” of doing so, in the physical theories we have so far developed? In
short, our answer is No. In particular, we believe there is no good a priori reason why
space should be a continuum; similarly, mutatis mutandis for time. But then the crucial
question arises of how this possibility of a non-continuum space should be reflected
in our basic theories, in particular in quantum theory itself, which is one of the central
ingredients of quantum gravity. . .141

At this point it must be emphasized that in ADG,R andC enter the the-
ory through the generalized arithmetics—the structure sheafAX, which, as noted
earlier, is supposed to be a sheaf of commutativeK = R, C-algebras (i.e.,K =
R, C ↪→ A). In turn, these arithmetics are invoked only when one wishes to rep-
resent local measurements and do with them general calculations with the vector
sheavesE employed by ADG.142 It is at this point that the basic assumption of
ADG that theEs involved are locally freeA-modules of finite rankn—that is to
say, locally isomorphic toAn—comes in handy, for all our local measurements and
calculations involveA, An and, in extenso, the latter’s natural local transformation
matrix groupAutE(U ) = EndE(U )• ≡ Mn(A(U ))•. Thus,real and complex num-
bers enter our theory through “the backdoor of measurement and calculation,” in
toto, through “geometry” as understood by ADG.143

141Excerpt from “Whence the Continuum?” in (Butterfield and Isham, 2000). These remarks clearly
pronounce our application here of ADG, which totally evades the usualC∞-calculus, to finitary
Lorentzian quantum gravity (see also remarks below).

142See sections 2 and 3, and in particular the discussion in subsection 4.3 next.
143This is in accord with our view ofA mentioned earlier as the structure carrying information about the

“geometry,” about our own measurements of “it all” (see footnotes 20, 44, the end of subsection 2.3
and subsection 4.3 next). In agreement with Isham’s remarks in (Isham, 2002) briefly mentioned
above,it is we, with our classical manifold conception of space and time, who bringR andC into
our models of the quantum realm. The quantum deep itself has no “numbers” as such, and it is
only our observations, measurements—in effect, “geometrizations—of “it all” that employs such
c-numbers (Bohr’s correspondence principle).Nature has no number or metric; we dress Her in
such, admittedly ingenious, artifacts(see footnote 20 and also the following one). On the basis
of ADG and its finitary application to Lorentzian quantum gravity here, shortly we will go a step
further than Isham and altogether question the very notion of “space-time” in the quantum realm.
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On the other hand, and in connection with the last footnote, since the con-
structions of ADG are genuinely independent of (the usual calculus on)C∞-
manifolds,144, whether real (analytic) or complex (holomorphic; Mallios, 1998a,b,
2001a, 2002; Mallios and Raptis, 2001, in press; Mallios and Rosinger, 1999,
2001), Isham’s remarks that the appearance of the arithmentic continua in quantum
theory are due to the a priori assumption of a classical space-time continuum—a
locally Euclidean manifold—do not affect ADG. Of course, we would actually
like to have at our disposal the usual number fields in order to be able to carry
out numerical calculations (and arithmetize our abstract algebraic sheaf theory)
especially in the (quantum)physicalapplications of ADG that we have in mind.145

We may distill all this to the following:

In the general ADG theory, and in its particular finitary application to quantum gravity
here, the commutative number fields, which happen to be locally Euclidean continua
(i.e., the manifoldsR ' R1 andC ' R2 being equipped with the usual differential
geometric—i.e.,C∞-smooth—structure), do not appear in the theory from assuming up
front a background space-time manifold.146 Rather, they are only built into our general-
ized arithmetic algebra sheafAX , thus they are of sole use in our local calculations and
“physical geometrization” (i.e., “analysis of measurement operations”) of the abstract
algebraic theory. As such, they are not actually liable to Isham’s criticism and doubts,147

for ADG totally evades the base geometric space-time manifold.
For instance, from our ADG-theoretic perspective, this independence of measure-

ment from an “ambient” space-time continuum and its focus solely on the (physical)
objects (fields) per se that live on that background “space(time)”—and perhaps more
importantly, regardless of whether the latter is a “discrete” or a continuous manifold

Thus, under the prism of ADG, the question whether space-time is “classical” or “quantum” should
be put aside and the doubts of usingR andC in quantum theory should not be dependent in any
way on the answer to that question.

144In fact, of any “background space-time structure,” whether “continuous” or “discrete.”
145For recall Feynman:The whole purpose of physics is to find a number, with decimal points etc.

Otherwise, you haven’t done anything. (Feynman, 1992)—and arguably, numbers are obtained by
measurements, observations, and the general “instrumental/operational–geometrical activity” that
physicists exercise (in their local laboratories, “with clocks and rulers” so to speak) on Nature.
Numbers are not Nature’s own. Thus, both the arithmetics, as encoded in the abelian algebra
structure sheafA, and theA-metricρ relative to it, lie on the observer’s (i.e., the classical) side
of the quantum divide and are not “properties” of quantum systems—they are our own “devices”
(see footnote 20). This brings to mind Aeschylus” remark in “Prometheus Bound”:Number, the
most ingenious of human inventions(Aeschylus, 1983) (notwithstanding of course the innumerable
modern debates among the philosophers of mathematics whether “number” is a creation of the
human mind or whether it exists, in a nonphysical Platonic world of Ideas, “out there”).

146For, as we have time and again emphasized in this paper, ADG evades precisely this: doing the usual
differential geometry (calculus) on a classicalC∞-smooth background manifold (Mallios, 1998a,b;
Mallios and Raptis, 2001, in press).

147That is, again, that the use of the fields of real (probabilities) and complex (probability amplitudes)
numbers in quantum theory is basically due to the a priori assumption of a classical space-time
manifold.
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base arena—may be seen as a “postanticipation” of Riemann’s words in (Riemann,
1854) which we quote verbatim from (Mallios, 2002):

Maß bestimungen erfordern eine Unabh¨angichkeit der Gr¨oßen vom Ort, die in mehr
als einer Weise stattfinden kann. : Specifications [:measurements] of mass require on
independence of quantity from position, which can happen in more than one way.

Moreover, as we shall see subsequently, and in contrast to Isham, we do not aim for
a noncontinuum theoresis of space-time (and gravity) in order to abolish the a priori
use ofR andC in the usual quantum theory148 with a concomitant modification of the
latter to suit the noncontinuum base space-time, for there is no (background) “space-
time” (whether “discrete” or “continuous’) as such in the quantum deep and in ADG the
(structural) role played the base (topological) space is a (physically) atrophic, inactive,
dynamically nonparticipatory one.

The last remark also prompts us to highlight from Isham (2002) another remark
of Isham that is quite relevant to our present work:149

The main conclusion I wish to draw from the discussion above is that a number of a
priori assumptions about the nature of space and time are present in the mathematical
formalism of standard quantum theory, and it may therefore be necessary to seek a
major restructuring of this formalism in situations [like for example those motivated by
quantum gravity ideas150] where the underlying spatio-temporal concepts (if there are
any at all) are different from the standard ones which are represented mathematically
with the aid of differential geometry.151

A good example would be to consider from scratch how to construct a quantum
theory when space-time is a finite causal set: either a single such—which then forms a
fixed, but non-standard, spatio-temporal background—or else a collection of such sets
in the context of a type of quantum gravity theory. In the case of a fixed background, this
new quantum formalism should be adapted to the precise structure of the background,
and can be expected to involve a substantial departure from the standard formalism: in
particular to the use of real numbers as the values of physical quantities and probabilities.

In the next section we will see exactly how, with the help of ADG, we can
write the vacuum Einstein equations for Lorentzian gravity over a causet and, in
contradistinction to Isham’s remarks above, without having to radically modify
quantum theory—in particular, in its use ofR andC—in order to suit that discrete,
noncontinuum background space-time. As a matter of fact, we will see that this

148At least, as long as we abide to the operational idea that our quantal operations, which classically
involve (ideal) clocks and measuring rods (Einstein, 1956; Grunbaum, 1963; Sklar, 1977) which, in
turn, are admittedly modelled afterR (Isham, 2002), are organized into (noncommutative) algebras
(i.e., in line with Heisenberg’s conception of an algebraically implemented “quantum operationality”
(Mallios and Raptis, 2001)) as well as that upon measurement they yield commutative numbers in
the base field (Bohr).

149The excerpt below is taken from section 2.2 in Isham (2002) titledSpace-time dependent quantum
theory.

150Our addition to tie the text with what Isham was discussing prior to it.
151And, of course, Isham refers to the usual differential geometry ofC∞-manifolds.
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base causet plays no physically significant role apart from serving as a (fin)sheaf–
theoretic localization scaffolding in our theory; moreover, no quantum theory
proper (either the standard one, or a modified one intuited by Isham above) will be
employed to quantize the classical theory (i.e., Einstein’s equations on the smooth
manifold). All in all, as we will witness in the sequel, in a strong sense our ADG-
based finitary vacuum Einstein gravity may be perceived as being “inherently” or
“already quantum,” “fully covariant’—i.e., as involving only the dynamical fields
and not being dependent in any way on an external, base space-time, be it granular
or a smooth continuum, and certainly as not being the outcome of applying quantum
theory (i.e., “formally quantizing’) the classical theory of gravity on a space-time
manifold (i.e., general relativity).

4.2.3. A brief “Critique” of the Ashtekar–Lewandowski Projective Limit Scheme

In Ashtekar and Lewandowski (1995), a projective system
←
M of compact

Hausdorff manifolds labelled by graphs—which can be physically interpreted as
“floating lattices”—was employed to endow, at the projective limit of that fam-
ily of manifolds, the moduli spaceA∞/G of C∞-smooth gauge (G)-equivalent
Y-M or (self-dual) gravitational connections with a differential geometric struc-
ture including vector fields, differential forms, exterior derivatives, metric volume
forms, Laplace operators and their measures, as well as the rest of the familiarC∞-
smooth differential geometric entities. As we shall see in the next section, there
has been an ever-growing need in current approaches to nonperturbative canon-
ical (Hamiltonian, loop variables-based) or covariant (Lagrangian, action-based)
quantum gravity, to acquire a firm tangent bundle perspective onA∞/G (i.e., have
a mathematically well-definedT(A∞/G) object), sinceT(A∞/G) can serve as the
physical phase space of quantum Y-M theories and gravity in its gauge-theoretic
form in terms of Ashtekar’s (self-dual) connection variables (Ashtekar, 1986) and
one would like to do differential geometry on that space. Thus, the basic idea is
that if such a mathematically rigorous differential geometric status is first estab-
lished on the moduli space, one could then hope to tackle deep quantum gravity
problems such as the Hilbert space inner product (and measure) problem, the prob-
lem of time, the nontrivial character ofA∞/G when regarded as aG-bundle, the
problem of physical Wilson loop observables etc.152 by the conventional calculus-
based (i.e., the usualC∞-differential geometric) methods of the canonical or the
covariant approaches to quantum field theory.

Although, admittedly, algebraic methods were used in Ashtekar and
Lewandowski (1995) towards endowing the moduli space of connections with
the conventional differential geometric apparatus, the very nature (i.e., theC∞-
smooth character) of each member of

←
M shows the original intention of Ashtekar

152See subsection 5.3 for a more analytical exposition and discussion of some of these problems.
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and Lewandowski: in order to induce the usualC∞-differential geometric structure
onA∞/G at the projective limit, one must secure that each member of the inverse
system

←
M comes equipped with such a structure—that is to say, it is a differential

manifold itself. In other words, as it was already mentioned in the beginning of
this section, the essence of Ashtekar and Lewandowski (1995) is thatlike differ-
ential structure yields(i.e., induces at the inverse limit)like differential structure.
Now, in view of the fact that some (if not all!) of the aforementioned problems
of T(A∞/G) come precisely from theC∞-smoothness of the space-time manifold
and, concomitantly, from the group Diff(M) of its “structure symmetries,”153 it
appears to us that this endeavor is to some extent “begging the question.”154 Of
course, it is quite understandable with “general relativity orC∞-smooth space-time
manifold-conservative” approaches to quantum gravity, such as the canonical or
the covariant (path-integral) ones,155 to maintain that the differential geometric
mechanism is intimately tied to (or comes from) the differential manifold, for,
after all,manifolds were created for the tangent bundle.156

However, this is precisely the point of ADG: the intrinsic, “inherent” mecha-
nism of differential geometry has nothing to do withC∞-smoothness, nothing to do
with C∞-smooth manifolds, and the latter (in fact, its structure sheafC∞M ) provide
us with just a (the classical, and by no means the “preferred,” one) “mechanism for
differentiating.”157 For instance, as we saw in sections 2 and 3, one can develop
a full-fledged differential geometry, entirely by algebraic (i.e., sheaf–theoretic)
means and completely independently ofC∞-smoothness, on the affine space of
connections as well as on the moduli space of gauge-equivalent connections.158 In
the finitary case of interest here, and in striking contradistinction to Ashtekar and
Lewandowski (1995), we have seen above (and in the past (Mallios and Raptis,
2001, in press)) how each principal finsheafP↑i of qausets in the projective system←
G carries virtually all the differential geometric panoply without being dependent
at all on the classicalC∞-manifold. In fact, in the next section we will see how such
aC∞-smooth space-time manifold-free scenario will not prevent us at all from writ-
ing a locally finite version of the usual Einstein equations for vacuum Lorentzian
gravity. Quite on the contrary, it will enable us to evade altogether Diff(M) as
well as some of the aforesaid problems that the latter group creates in our search
for a cogent nonperturbative quantum gravity, whether canonical or covariant, on
the moduli space of gravitational connections. Moreover, we will see how we can

153See next section.
154The quest(ion) being for (about) a quantum gravitational scheme that is finitistic, but more impor-

tantly,genuinely backgroundC∞-smooth space-time manifold-free(see the following section).
155See category 1 in the prologue to this paper.
156In the next section we will return to comment further on this in connection with (140).
157See the concluding section about “the relativity of differentiability.”
158For the full development of differential geometry `a la ADG on gauge-theoretic moduli spaces, the

reader is referred to Mallios (manuscript in preparation).
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recover theC∞-smooth vacuum Einstein equations at the projective limit of an
inverse system

←
E of fcqv-ones. Already at a kinematical level, at the end of the

next subsection we will argue ADG-theoretically how the “generalized classical”
C∞-smoothmoduli space of gauge-equivalent (self-dual) spin-Lorentzian connec-
tions can be obtained at the inverse limit of an inverse system

←
M of fcqv-moduli

spaces.
But before we do this, let us recapitulate and dwell a bit longer on some

central kinematical ideas that were mentioned en passant above.

4.3. Remarks on the “Operational” Conception of Finitary Quantum
Causality: A Summary of Key Kinematical Notions for Finitary, Causal,
and Quantal Vacuum Einstein–Lorentzian Gravity

Our main aim in this subsection is to highlight the principal new kinemat-
ical notions, of a strong operational–algebraic flavor, about “finitary causality”
originally introduced in Mallios and Raptis (2001). In this way, we are going
to emphasize even more the characteristic contrast between ouroperational and
quantal—in fact, observer-dependent—conception of locally finite causality via
qausets, and Sorkinet al.’s morerealistic causet theory proper. As a main source
for drawing this comparison of our approach against causet theory we are going
to use (Sorkin, 1995). Also, by this review we hope to make clearer to the reader
the intimate connection between central ADG-theoretic notions such as “open
gauge,” “structure sheaf of generalized arithmetics/coordinates or measurements,”
etc., and some primitive notions of the finitary approach to space-time (topology)
as initially presented by Sorkin in (Sorkin, 1991).

With Mallios and Raptis (2001) as our main reference and compass to orientate
us in this short review, we provide below a list of primitive assumptions, already
explicitly or implicitly made in (Sorkin, 1991), that figure prominently in all our
ADG-based trilogy (i.e., in the literature (Mallios and Raptis, 2001, in press) and
here) on finitary space-time and Lorentzian quantum gravity:

1. The basic intuitive and heuristic assumption is the following identification
we made in Mallios and Raptis (2001):

“(coarse) localization”≡ “(coarse) measurement/observation” (117)

For the moment, assuming with Sorkin that topology is a “predicate”
or property of the (quantum) physical system “space-time,” in the sense
that “the points of the manifold are the carriers of its topology” (Sorkin,
1991),we model our coarse measurements of (the topological relations
between) space-time point events by “regions” or “open sets” about them.
Conversely, the open sets of a covering separate or distinguish the points
of X. We thus have, for a bounded regionX of a classicalC0-space-time
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manifold M ,159 and a locally finite open coverUi of it,160

“(coarse) determination ofx ∈ X” ≡ “open setU ∈ Ui aboutx” (118)

2. Operationally speaking, it is widely recognized thatlocalization involves
“microscopic energy,” and measurement a gauge. We thus identify again
(nomenclaturewise)

“open setU ∈ Ui about x” ≡ “open gaugeUof x” (119)

and note that this—i.e., “open gauge”— is precisely the name ADG gives
to the sets of the open coverings of the base topological or localization
spaceX involved in a differential triad (Mallios, 1998a,b).

3. Of course, the better (i.e., more accurate or sharp) the localization, the
higher the microscopic energy of resolution (ofX into its point events).
Thus, we suppose that the locally finite open coverings ofX form an
inverse system or net (i.e., a partially ordered set itself) with respect to the
relation “º” of fine graining. Roughly, better (more accurate or sharper)
localization ofx involves smaller and more numerous open sets about it,
thus higher microscopic energy of resolution.

4. With these operational assumptions, Sorkin’s two main results in Sorkin
(1991) can be interpreted then as follows:
(i) Sorkin’s “algorithm’—i.e., the extraction of aT0-topological posetPi

from X relative to a locally finite open coverUi —involves separating
and grouping together into equivalence classes (of “observational in-
distinguishability’) the point events ofX relative to the open gauges
U in Ui .161 Point events in the same equivalence class (which is a
vertex) in Pi are interpreted as being indistinguishable relative to our
coarse measurements or “observations” inUi , and

(ii) Sorkin’s inverse limit of the projective system of topological posets←
P can now be interpreted as the recovering of the locally Euclidean
C0-topology ofX at the finest resolution or “ultra localization” ofX
into its point events.In this sense, the continuous manifold topology
is, operationally speaking, an ideal or “non-pragmatic” (Raptis and
Zapatrin, 2000)situation involving infinite (microscopic) energy of
localization or measurement.

159As explained in Raptis and Zapatrin (2000), the assumption of a bounded space-time regionX rests
on the fact that actual or “realistic” experiments are carried out in laboratories of finite size and are
of finite duration.

160Again, as explained in Raptis and Zapatrin (2000), the assumption of a locally finite open covering
Ui rests on the experimental fact that we always record, coarsely, a finite number of events.

161See (Mallios and Raptis, 2001, in press; Raptis, 2000a,b; Sorkin, 1991) for more details about
Sorkin’s algorithm.
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5. Then came Sorkin’s radical reinterpretation of the locally finite partial or-
ders involved from topological to causal (Sorkin, 1995), which essentially
planted the seed for causet theory. We recall from Sorkin (1995) a telling
account of this conceptual sea change:

. . .Still, the order inhering in the finite topological space seemed to be very
different from the so-called causal order defining past and future. It had only
a topological meaning but not (directly anyway) a causal one. In fact the
big problem with the finite topological space was that it seemed to lack the
information which would allow it to give rise to the continuum in all its aspects,
not just in the topological aspect, but with its metrical (and therefore its
causal) properties as well. . .The way out of the impasse involved a conceptual
jump in which the formal mathematical structure remained constant, but its
physical interpretation changed from a topological to a causal one. . .The
essential realization then was that, although order interpreted as topology
seemed to lack the metric information needed to describe gravity, the very
same order reinterpreted as a causal relationship, did possess information in
a quite straightforward sense. . . In fact it took me several years to give up the
idea of order-as-topology and adopt the causal set alternative as the one I had
been searching for. . .

6. Now, the basic idea in Raptis (2000a), but most explicitly in Mallios and
Raptis (2001) under the light of ADG, is that, in spite of Sorkin’s seman-
tic switch above, and in order to retain our picture of finitary posets as
graded discrete differential manifolds (or homological objects/simplicial
complexes),162 we felt we had to give a more operational–algebraic (thus
more easily interpretable quantum mechanically (Raptis, 2000)) definition
of finitary causality than causets. We read from Mallios and Raptis (2001)
what this operational, observationUi -dependent conception of (quantum)
causality involved:

. . .All in all, (quantum) causality is operationally defined and interpreted
as a “power relationship” between space-time events relative to our coarse
observations (or approximate operations of local determination or “measure-
ment”) of them, namely, if eventsx andy are coarsely determined byN (x)

162So that we could apply the differential geometric ideas of ADG, in a (fin)sheaf–theoretic context
(Raptis, 2000b), at the reticular level of causets (Mallios and Raptis, in press). Indeed, the funda-
mental reason that we insist that the locally finite posets we are using aresimplicial complexesis
that the construction of the incidence algebras from such posets is manifestlyfunctorial (Raptis
and Zapatrin, 2000, 2001; Zapatrin, in press), which in turn secures that the (fin)sheaves over them
exist. Had we, like Sorkinet al. insisted onarbitrary (locally finite) posets (see below), the corre-
spondence “finitary posets”−→“incidence algebras” would not be functorial, and the (fin)sheaves
that we would be talking about would not actually exist. Furthermore, the bonus from working
with (locally finite) posets that are a fortiori simplicial complexes is that the (incidence algebras of
the) latter, again as shown in the literature (Raptis and Zapatrin, 2000, 2001; Zapatrin, in press),
have a rich (discrete) graded differential structure, which has opened the possibility of applying
ADG-theoretic ideas to the (fin)sheaves thereof.
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andN (y) with respect toUi , andN (y) ⊂ N(x),163 then we say that “x causes
y.” The attractive feature of such a definition and interpretation of causality
is that, by making it relative toUi , we render it “frame-” or “ gauge-” or even
“observation-dependent” . . .164

Of course, the open sets inUi now stand forcoarse causal regionsor
rough operations of “observation” or “measurement” of the causal re-
lations between events in the curved space-time manifold (Mallios and
Raptis, 2001), not just coarse approximations of the topological relations
proper between events. Thus, in view of Sorkin’s semantic switch quoted
above from Sorkin (1995), as well as his assumption in Sorkin (1991) that
the points ofX are the carriers of its topology, we assume a more oper-
ational and at the same time less “realistic” stance than Sorkin (Sorkin,
1995) by maintaining thatthe point-events of X are the carriers of causal-
ity in relation to our coarse and perturbing observations (open gauges) U
in Ui (Mallios and Raptis, 2001).

7. Having secured that our structures now enjoy both a causal and an op-
erational interpretation, it became evident to us that our scheme differs
fundamentally from Sorkinet al.’s causet scenario at least in the follow-
ing two ways:
(i) Unlike the case in causet theory, which posits up front a “locally fi-

nite poset democracy,” in our theoretical scheme not all locally finite
posets and their incidence Rota algebras may qualify as being “op-
erationally sound qausets.” Only posets coming from coarse causal
gaugesEUi

165 and their incidence algebras are admissible as qausets
proper. As mentioned above, this secures that the locally finite posets
extracted by Sorkin’s algorithm from theEUi s (which are now causally
interpreted) can be viewed as (causal) simplicial complexes166 and,

163WhereN (x) is effectively theČech–Alexandrov “nerve-cell” (Cech, 1932; Alexandrov, 1956) ofx
relative toUi , namely, the smallest open set∩{U ∈ Ui : x ∈ U } in the subtopology ofX (generated
by countable unions of finite intersections of the open gaugesU in Ui ) which includesx (see also
Mallios and Raptis, in press)). By such cells one builds up (abstract) simplicial complexes (nerves)
which, as noted before, are isomorphic to Sorkin’s finitaryT0-topological posets in (Sorkin, 1991)
essentially under two additional conditions onUi : that it isgeneric(i.e., all nontrivial intersections
of its open sets are different) andminimal (i.e., if any of its open sets is omitted, it ceases being a
covering ofX) (Raptis and Zapatrin, 2001; Porter, 2002). (This footnote is not included in Mallios
and Raptis (2001)).

164Such a cellular (simplicial), but more importantly to our physical interpretation here, “coarse
observation-dependent” (“perturbing operations-sensitive”), decomposition of space-time, apart
from Regge’s celebrated paper (Regge, 1961), has been worked out by Cole (1972) and very re-
cently by Porter (2002). (This footnote is also not included in (Mallios and Raptis, 2001)).

165Again, the right-pointing arrow over the coveringUi indicates the causal semanticscoarse causal
regionsgiven to the open setsU in it above.
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in extenso, the incidence algebras (qausets) associated with them can
be viewed as graded discrete differential algebras (manifolds) (Raptis
and Zapatrin, 2000, 2001; Zapatrin, 1996, in press) thus allowing the
entire ADG-theoretic panoply to be applied on (the finsheaves of)
them (Mallios and Raptis, 2001, in press), and

(ii) as noted before, our operational scheme is in glaring contrast to Sorkin
et al.’s more “realistic” conception of dynamical (local) causality
(gravity). For example, we recall from Sorkin (1995) that for Sorkin,
in contradistinction to the rather standard operationalist or “instru-
mentalist” interpretation of general relativity according to which the
gravitational potentials, as represented by the 10 components of the
metric tensorgµν , provide “a summary of the behaviour of idealized
clocks and measuring rods” (Einstein, 1956; Grunbaum, 1963; Sklar,
1977; Torretti, 1981), the gravitational field—the dynamical field of
“locality” or “local causality” (Mallios and Raptis, 2001; Raptis and
Zapatrin, 2001)—“is an independent substance, whose interaction
with our instruments gives rise to clock-readings, etc.” This alone
justifies the realist or “Platonic” (ontological) causet hypothesis ac-
cording to which “space-time, at small scales, is a locally finite poset”
(Bombelli et al., 1987)—a realm quite detached from and indepen-
dent of (the operationalist or “pragmatist” (Finkelstein, 1996) phi-
losophy according to whichall that there is and matters is) “what
we actually do to produce space-time by our measurements” (Sorkin,
1995)—whose partial order is the discrete analogue of the relation
that distinguishes past and future events in the (undoubtedly realis-
tic or “Platonic’) macroscopic, geometrical space-time continuum of
general relativity.

8. We now come to the ADG-theoretic assumption of “arithmetizing” or
“coordinatizing” our coarse localizations or measurements. This is rep-
resented by assuming that the base topological spaceX, which we have
charted by covering it by the open gaugesU in Ui (or equivalently, inEUi ),
is K -algebraized in the sense that we localize sheaf–theoretically over it
abelianK = R, C-algebras which comprise the structure sheafAX. The
latter is supposed to be the commutative algebra sheaf of “generalized
arithmetics” in our theory—the realm in which our coarse local measure-
ments, represented by the local sections ofA (in0(U, A) ≡ A(U ), U ∈ Ui ,
take values—the readings on our abstract gauges so to speak. That we
choose the stalks ofA to be inhabited byabelianalgebras is in accord

166It must be noted here that it was Finkelstein, who first insisted, in a reticular and algebraic setting
not very different from ours called “the causal net,” fora causal version of (algebraic) topology
and its associated (co)homology theory(Finkelstein, 1988).
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with Bohr’s quantum theoretic imperative according to which our mea-
surements always yield commutative,c-numbers.167 Furthermore, as it
was also emphasized in the previous subsection, since the constant sheaf
K = R, C of the reals or the complexes is canonically injected intoA, we
realize again thatthe usual numerical continuaR andC enter into our
theory via the process of abstract coordinatization and local measurement,
and not by assuming that the base topological space(time) X is a classical,
locally Euclidean continuum (i.e., a manifold). Finally, we must also em-
phasize here, as it was noted throughout the previous sections, thatin ADG
all our (local) calculations reduce to expressions involving (local sections
of) A—in particular, all our vector sheavesE of rank n are (locally) of the
form An168 and, as a result, their (local) structure symmetries comprise
the matrix group(EndE(U ))• ≡ Mn(A(U ))•.

9. Finally, anticipating our comments on an abstract, essentially categorical,
version of gauge invariance and covariance of the gravitational dynamics
of qausets in terms of finsheaf morphisms to be given subsequently, we
note here that, although our kinematical, operational–algebraic conception
of finitary quantum causality above is apparently observation or gaugeUi -
dependent (Mallios and Raptis, 2001), the dynamics, which is expressed in
terms of the principal (fin)sheaf morphism—the finitary gravitational spin-
Lorentzian connectionEDi and its scalar curvatureER( EDi ), will be seen to
be manifestlyUi -independent. Thus, while quantum causality is kinemati-
cally expressed as a power relationship between events relative to our own
coarse observations (gauges) of them inUi , its dynamical law of motion
is characteristically independent of the latter (Mallios and Raptis, 2001).
We will comment further on this apparent paradox in subsection 5.1.1.

4.3.1. Projective Limits of fcqv-Moduli Spaces

In closing the present section, we make some final kinematical remarks.
These concern inverse limits of moduli spacesEM(+)

i ( EE↑i ) of (self-dual) fcqv-
spin-Lorentzian connections (dynamos)ED(+)

i on the Lorentzian finsheavesEE↑i :=
( EEi , Eρi ). These spaces are defined as follows:

EM(+)
i ( EE↑i ) := EA(+)

i ( EE↑i )/
−→
Aut i EE↑i (120)

and they are the fcq-analogues of the ADG-theoretic moduli spaces defined in
(92) in general, as well as in (103) and (104) in the particular case of self-dual

167See also footnote 44 and Mallios and Raptis (2001, in press).
168And rather fittingly, thelocal (coordinate) gauge eU ≡ {U ; (ei )0≤i≤n−1}(U ∈ Ui ) of the vector sheaf
E of rankn in footnote 22, which consists of local sections ofE (in E(U ) ≡ (A(U ))n ≡ An(U )),
can be equivalently calleda local frame ofE (Mallios, 1998).
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connections.169 EM(+)
i ( EE↑i ), as we shall see in the next section, plays the role of the

quantum configuration space for our theory which regards the (self-dual) fcqv-
dynamosED(+)

i as (the sole) fundamental (quantum) dynamical variables.
Now, one such moduli space corresponds to (i.e., is based on) each and every

member of the direct system
¿
T = {Ti } of fcq-differential triads and, in extenso,

to each member of the inverse system
←
G = {( EP↑i , ED(+)

i )} of principal Lorentzian
finsheaves of qausets and their reticular (self-dual) spin-Lorentzian connections.170

Thus, we can similarly define the projective system
←
M := { EM(+)

i ( EE↑i )} of (self-
dual) fcqv-moduli spaces like the one in (120) and, according to the general ADG
theory (Papatriantafillou, 2000, 2001), take its categorical limit, which yields

M(+)
∞
(
E↑∞
) = lim

∞←i

←
M ≡ lim

∞←i

{
EM(+)

i

( EE↑i )} (121)

theC∞-smooth moduli space ofC∞ (X)-automorphism equivalentsmooth (self-
dual) spin-Lorentzian connections(K)D(+)

∞ on the Lorentzian vector bundle/sheaf
E↑∞ associated to the principal orthochronous Lorentzian bundle/sheaf(K)P↑ ≡ EP↑∞
over the regionX of theC∞-smooth K-manifoldM . As noted before,EM(+)

∞ (E↑∞)
corresponds to a generalized version (i.e., aC∞-smooth one) of the classical
moduli spaceA(+)

∞ of gauge-equivalent (self-dual)C∞-smooth spin-Lorentzian
connections on the regionX of the usual differential (i.e.,C∞-smooth) space-time
K-manifold M .

5. LOCALLY FINITE, CAUSAL, AND QUANTAL VACUUM
EINSTEIN EQUATIONS

This is the neuralgic section of the present paper. Surprisingly, it is also
the simplest one as it is essentially a straightforward transcription of the ADG
constructions and results of sections 2 and 3 to the locally finite case of curved
finsheaves of qausetsEE↑i and their reticular spin-Lorentzian connectionsEDi . So,
without further ado, we are going to present a locally finite, causal, and quantal
version of the vacuum Einstein equations (53) for Lorentzian gravity emphasizing
in particular their physical interpretation. We also derive these equations from an
action principle.

169In (120), EA(+)
i ( EE↑i ) is the fcq- (and self-dual) version of the abstract affine spaceAA(E) of A-

connectionsD on a vector sheafE in (54).
170In fact, as we shall present in subsection 5.5.2, a tower of numerous important inverse/direct systems

of structures can be based on
¿
T. This just shows the importance of the notion of differential triad

in ADG and its finitary application here.
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5.1. Finitary, Causal, and Quantal Vacuum Einstein–Lorentzian Gravity

First we note that theEA i -connectionEDi on EE↑i is assumed to the compatible
with the finsheaf morphismEρi in (114), as follows:

EDi
HomEAi

( EE↑i , EE↑∗i )
(Eρi ) = 0 (122)

which is the finitary analogue of (17) implying that the connectionEDi is torsion-
less.171 EDi is a reticular Lorentzianmetricconnection.

Then, analogously to the abstract expressions (36) and (37), and for the cor-

responding first prolongationED1
i of EDi (≡ ED0

i ) as in (33) (i.e.,ED1
i : EΩ1

i −→ EΩ
2
i ),

we define the nonzero curvatureERi of the reticular connectionEDi on EE↑i as the
following End EE↑i -valued reticular 2-form

ERi ( EDi ) : = ED1
i ◦ EDi 6= 0

ERi ∈ HomEA i
( EE↑i , EΩ2

) = HomEA i
( EE↑, EΩ2

i )( EPi ) = EΩ2
(End EE↑i )( EPi ) (123)

emphasizing also that it is anEA i -morphism. Thus, we can also define the associated
Ricci tensor ERi ∈ End EE↑i as in (51) and the traced Ricci tensor corresponding to
the reticularEA i -valued Ricci scalar curvatureERi as in (52).172

So, we are now in a position to write, at least formally, the locally finite, causal,
and quantal version of the vacuum Einstein equations for Lorentzian gravity (53),
as follows”

ERi ( EE↑i ) = 0 (124)

coining the pair (EEi , EDi ) consisting of a curved finsheaf of qausetsEEi and the
nontrivial fcqv-dynamo173 EDi on it effecting that curvature, a(f)initary, (c)ausal,
and (q)uantal (v)acuum Einstein field(fcqv-E-field) and, in extenso, the triplet
( EEi , Eρi , EDi ) ≡ ( EE↑, EDi ) anfcqv Einstein-Lorentz field(fcqv-E-L-field). In turn, the

latter prompts us to call the corresponding pentad (EA i , E∂i ≡ Ed0
i , EΩ1

i , Edi ≡ Ed1
i , EΩ2

i )
an fcqv-E-L-curvature space, which, in turn, makes the base causetEPi a fcqv-E-
space.

171Note that in (122), to avoid subscript congestion onED, we have raised the refinement or finitarity
index “i ” to a superscript.

172Of course, we assume that, locally in the finsheaves,Ri is a 0-cocycle ofn× n-matrices having

for entries local sections ofEΩ2
i —that is to say, local 2-forms onEPi , similarly to (38).

173See footnotes 103 and 104. We note here that one can straightforwardly write (124) in terms of
a self-dualfinitary spin-Lorentzian connectionED+i and its Ricci curvature scalarER+i . We will
return to self-dual connections in subsection 5.3 where we will discuss a possible “fully covariant”
quantization scheme for vacuum Einstein Lorentzian gravity.
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5.1.1. Various Interpretational Matters

Now that we have formulated the vacuum Einstein equations for Lorentzian
gravity on EE↑i ≡ ( EEi , Eρi ) we comment briefly on their physical meaning and other
related issues of interpretation.

1. Differentiability is independent ofC∞-smoothness.174 First we note, in
keeping with our comments about “reticular differential geometry” in
part 4 of subsection 4.1, that (124) is not a “discrete differential” (e.g.,
a difference) equation. Rather, it is a genuine., albeit abstract, differential
equation. The discreteness of the base causetEPi —the fcqv-E-space—does
not prevent us from formulating genuine differential equations over it. As
noted repeatedly earlier,EPi is merely a localization base (topological)
for the qausets (living in the stalks ofEE↑i ) playing no role at all in the
differential geometric structure of our theory. In other words, our differ-
entials (viz, connections) do not derive from the background space(time).
Space(time) does not dictate to us the character of the differential mech-
anism, as we would be (mis)led to belive if we based ourselves on the
classical differential geometry according to which differentiability comes
from theC∞-smooth manifoldM or equivalently, from the coordinate al-
gebrasC∞(M) thereof. That our base space is “discrete” does not mean at
all that the differential geometric mechanism should also be so.

2. A categorical dynamics and an abstract (generalized) principle of general
covariance independent ofDiff( M). Related to 1, and as it was anticipated
in Mallios and Raptis (2001), the dynamics of local quantum causality, as
depicted in (124), is expressed solely in terms of (fin)sheaf morphisms—
the main finsheaf morphism being theC-linear fcqv-dynamoEDi . In fact,
the fcqv-E-equations involve the curvatureERi of the connectionEDi , which
moreover is anEA i -sheaf morphism. In other words, and in view of the
physical interpretation that ADG gives to the commutative algebra sheaf
A of generalized coefficients,175 the law for the fcqv-E-gravity is inde-
pendent both of our (local) “measurements” or “geometry”(as encoded
in the structure sheaf of coefficientsEA i (V)) and of our (local) gauges
(represented by the open setsU in the open coveringUi that we employ
to coarsely localize the events ofX and “measure” them inEA i (V); V
open in EPi ). This is reflected in the (local) gauge invariance of (124) un-
der (local) transformations in

−→
Aut i EE↑i (V) ' Mi

m( EA i (V))•)—the reticular

(local) structure (gauge) group ofEE↑i (V) ' EAn
i (V). This invariance, in

turn, is a consequence of the fact that bothERi and its contractionERi are

174This is the concluding slogan 2 in Mallios and Raptis (in press). We will elaborate further on it in
the last section.

175See discussion around footnote 44.
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gauge-covariant as they obey a reticular analogue of the homogeneous
gauge transformation law for the gauge field strengths (39). Thus, as it has
been already highlighted in Mallios and Raptis (2001), our scheme sup-
ports the following abstract categorical version of the principle of general
covariance of general relativity:176

The fcqv-dynamics, as expressed in (124), is gaugeUi -independent. Accord-
ingly, the underlying topological space-timeX and its causal discretization
EPi based on the locally finite open coverUi play no role in the dynamics of
local quantum causality (Mallios and Raptis, 2001).

It is reasonable to expect this since the fcqv-dynamoEDi , or equiva-
lently its fcqv-potentialEA i , can be viewed as the “generator” of the fcqv-
dynamics.177 and, as we argued in section 1 above, differentiability is
independent of the background causal-topological spaceEPi

178 Thus, a
fortiori

the fcqv-dynamics, as expressed in (124), is gaugeUi -independent. Accord-
ingly, the underlying topological space-timeX and its causal discretization
EPi based on the locally finite open coverUi

179 play no role in the dynamics of
local quantum causality as encoded in the fcqv-dynamoEDi or in its potential
EAi (Mallios and Raptis, 2001).

Plainly then, the reticular invariance (gauge) group of (the vacuum dy-
namics of qausets (124) generated byEDi on ) EE↑i —the structure group
−→
Aut EE↑i —has no relation whatsoever with the invariance group Diff (M)
of the classical differential space-time manifoldM of general relativity.
For instance, Diff (M), which implements the principle of general co-
variance in Einstein’s classical theory of gravity, is precisely the group
that preserves the differential (i.e.,C∞-smooth) structure of the underly-
ing space-time manifold. In contradistinction,

−→
Aut EE↑i , which locally is

176The epithet “categorical” pertaining precisely to that bothEDi and ERi ( EDi ) are morphisms (K - and
EAi -morphisms, respectively) in the relevant category of finsheaves of incidence algebras (qausets)
over locally finite posets (causets).

177In the sense that the curvatureERi ( EDi )—the dynamical variable in (106)—may be regarded as the
“measurable, geometric effect” since it is anEA i -morphism (i.e., it respects our measurements), while
EDi , from which ERi derives and which is not anEAi -morphism (i.e., it eludes our measurements),

as its “original, algebraic cause.” That is why we calledEDi the fcqv-dynamo in the first place: it is
the generator of the fcqv-dynamics (160)—the operator in terms of which the fcqv-E-equations are
formulated. Subsequently, we will see howEDi can be regarded as the main quantum configuration
variable andEAi , the affine space of all such fcqv-dynamos, the corresponding kinematical space of
quantum configurations (ofEDi ) in our theory.

178The connectionEDi being in effect a generalized differential operator (derivation) of an essentially
algebraic character (Mallios, 1998a,b; Mallios and Raptis, 2001, in press).

179See subsection 4.3 above.
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isomorphic toMi
n( EA i (U ))•,180 is the group that preserves the local inci-

dence algebraic structure of qausets stalkwise in their finsheafEE↑i thusit
has nothing to do with the underlying topological base causetEPi per se.181

Of course, since, as we argued earlier, differentiability in ADG, and in our
finitary theory in particular, derives from the stalk (i.e., from the incidence
algebras modelling qausets), the (local) gauge group

−→
Aut EE↑i of incidence

algebra automorphisms,like its classical analogueDiff ( M), respects the
reticular differential structure, but unlikeDiff( M), it (and the reticular
differential structure that it respects) does not come from the background
causal-topological spaceEPi . All in all,

Dynamics in our ADG-based theory, as expressed in (124), is genuinely back-
ground space-time-free,whether the latter is a smooth continuum, or a locally
finite causal space like a causet, or pretty much whatever else.

3. Everything comes from dynamics: No a priori space-time. The last remarks
in section 2 and the ones above bring to mind Einstein’s philosophical
remark:

“Time and space are modes by which we think, not conditions in which we
live” (Einstein, 1949).

as well as Antonio Machado’s insightful poetic verse:

Traveller there are no paths; paths are made by walking”
(Machado, 1982).

in the sense that our theory (and ADG in general) indicates that space-
time is not something “physically real’—i.e., it is not an active substance
that participates in the dynamics of Nature.The only physically significant
entity in our theory is the dynamical fcqv-E-field( EE↑i , EDi ),182 which does
not depend at all on a supporting space(time) (of any sort, “discrete” or
“continous’) for its dynamical subsistence and propagation. This is in
glaring contrast to the classical theory (general relativity) where space-
time is fixed a priori,183 once and forever so to speak, by the theorist184

to a backgroundC∞-smooth arena and it does not get involved into the
dynamics185 (i.e., in the Einstein equations).

180And Mi
n=4( EAi (U ))•) ' sl(2,Ci ' so(1, 3)↑i (Mallios and Raptis, 2001).

181In other words,
−→
Aut i EE↑i acts directly on the (local) objects that live on “space(time)” (i.e., on the

local sectios ofEE↑i —the qausets), not on “space(time)” itself.
182In subsections 5.3 and 5.4 this remark will prove to be of great import since we will argue that our

theory is “fully covariant” and, in a substle sense that we will explain, “innately quantum.”
183That is to say,there are paths!
184That is to say, “time and space are modes by which we think. . .”—our own theoretical constructs

or figments.
185That is to say, space-time is not an active, dynamical, “living” so to speak, condition.
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However, Machado’s insight seems to go a bit further, for it intuits not
only that space(time) is (physically) nonexistent (because it is dynamically
nonparticipatory), but also that it is actually the “result” of dynamics.186

How can we understand this in the context of ADG and what we have
said so far? To give a preliminary answer to this question, we may have
to address it first from a kinematical and then from a deeper dynamical
perspective.

(i) Spacetime from “algebraic kinematics.” The kinematical emergence
of “space” from incidence algebras modelling discrete quantum topo-
logical spaces and of “space-time” from the same structures, but
when the locally finite partial orders from which they come from
are interpreted `a la Sorkin (Sorkin, 1995) as causal sets rather than
as finitary topological spaces, has been worked out in the literature
(Raptis and Zapatrin, 2000, 2001). Especially in the second reference,
the kinematics of a reticular, dynamically variable quantum space-
time topology—a Wheelerian foam-like structure so to speak—was
worked out entirely algebraically on the basis of a variant of Gel’fand
duality187 coinedGel’fand spatialization. The latter pertains to an
extraction ofpoints and the concomitant assignment of a suitable
topologyon them, by exploiting the structure and representation the-
ory of (finite dimensional) nonabelian associative algebras like our
incidence Rota algebrasEΩi modelling qausets. Such a procedure,
quite standard in algebraic geometry (Shafarevich, 1994), is essen-
tially based on first identifying points withkernels of irreducible
representations of theEΩi s which, in turn, areprimitive idealsin EΩi s,
and then endowing the collection of these ideals—the so-calledprim-
itive spectra of the incidence algebras Spec( EΩi )—with a nontrivial
topology.188 Subsequently in Mallios and Raptis (2001), we heuris-
tically argued that the very definition of the principal finsheavesEP↑i
of qausets over Sorkinet al.’s causets, which are interpreted as the
kinematical structures of a locally finite, causal, and quantal theoresis
of Lorentzian space-time and vacuum Einstein gravity, is essentially
schematic.189 The general lesson we have learned from this work is
that

186That is,paths are made by walking.
187The reader will have to wait until the following subsection for more comments on Gel’fand duality.
188For the incidence algebras in focus such a topology is theRota topology(Raptis, 2000a; Raptis and

Zapatrin, 2000; Raptis and Zapatrin, 2001).
189In (noncommutative) algebraic geometry, schemes—a particular kind of “ringed spaces”—are

sheaves of (noncommutative) rings or algebras over their prime spectra usually endowed with
the standard Zariski topology (Shafarevich, 1994). Incidentally, in ADG, the pair (X, A), which
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“space(time)” and its geometry190 is secondary, derivative from
a deeper, purely algebraic theoresis of Physis, inherent already
in the initial,so to say thus far“geometrical” aspect.191

(ii) Spacetime from “algebraic dynamics.” The idea that space-time and
gravity come from an algebraically modelled (quantum) dynamics is
a deeper one than (i). Presumably, in Machado’s verse quoted above,

it is exactly the particles, fields and their mutual interrelations
(i.e., interactions) that “do the walking,” and by their dynamics
they “define” (i.e., delimit) “space-time.”192

It must be noted that, still at the kinematical level of description, Eu-
clidean geometry is an abstraction from the motions of, as well as the
congruence and incidence relations between, rigid bodies. However,
Einstein was the first to realize that geometry should not be regarded
as an entity fixed ab initio by the theoretician, but it must be made
part of the general physical process thus be subjected to dynami-
cal changes (Einstein, 1983b), hence he arrived at general relativity
the dynamical theory of the space-time metricgµν (Einstein, 1956).
On the other hand, very early on Einstein also realized that even
though general relativity relativized the space-time metric and suc-
cessfully described it as a dynamical variable, the smooth geometric
space-time continuum was still lying at the background as an in-
ert, non-dynamical, ether-like substance a priori fixed by the theorist

has been coined “K -algebraized space,” may be thought of as such (commutatively) ringed space
(Mallios, 1998a). The schematic aspects of our theory and their affinity to similar noncommutative,
quantal topological spaces known asquantales, as well as to sheaves over such quantales (and the
topoi thereof), have been explored in Raptis (2001a) and recently reviewed in the literature (Raptis,
2001b, 2002).

190We use the term “geometry” in a general sense which includes for instance “topology” and other
qualities of “space.”

191We tacitly abide to the broad “definition” of geometry asthe analysis of algebraic structure. It
must also be noted here that Finkelstein has long maintained in a spirit akin to ours thatspace-
time, causality, gauge fields and gravityareemergent notions from a more basic, purely algebraic
(and finitistic!) theory (Finkelstein, 1969, 1988, 1996; Selesnick, 1991, 1994, 1995, 1998); hence,
innately “quantal.

192From this perspective, the standard procedure of first laying down the kinematics of a theory (e.g.,
the space of kinematical histories or paths of the system) and then the dynamics, appears to be upside
down. Dynamics (“cause”) comes first, the kinematical space (“effect”) second. This already points
to a significant departure of our scheme from Sorkinet al.’s causet theory whose development
followed Taketani and Sakata’s methodological paradigm for the construction of a physical theory
according to whichone must first develop (and understand!) the kinematics of a physical theory
and then proceed to formulate the dynamics(Sorkin, 1995). Perhaps this is the way we have so far
practiced and understood physics—i.e., by first delimiting what can possibly happen (kinematics)
and then describing what actually happens (dynamics)—but Physis herself may not work that way
after all (Mallios, 2002).
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(Einstein, 1983a, 1991; consequently, and intrigued by the dramatic
paradigm-shift in physical theory that quantum mechanics brought
about, he intuited soon after the formulation of general relativity that

. . .The problem seems to me how one can formulate statements
about a discontinuum without calling upon a continuum space-
time as an aid; the latter should be banned from theory as a
supplementary construction not justified by the essence of the
problem—a construction which corresponds to nothing real. But
we still lack the mathematical structure unfortunately. . . (1916)193

and a year before his death, that

. . .An algebraic theory of physics is affected with just the in-
verted advantages and weaknesses [than a continuum theory]194

. . . It would be especially difficult to derive something like a
spatio-temporal quasi-order from such a schema...But I hold it
entirely possible that the development will lead there. . . [that is,]
against a continuum with its infinitely many degrees of freedom.
(1954)195

Also, again motivated by the quantum paradigm, he intuited that

. . .Perhaps the success of the Heisenberg method points to a
purely algebraic method of description of nature, that is to the
elimination of continuous functions from physics.” (1936)
(Einstein, 1936)

and, in the concluding remarks in the last appendix of The Meaning
of Relativity, that

. . . [Quantum phenomena do] not seem to be in accordance with
a continuum theory, and must lead to an attempt to find a purely
algebraic theory for the description of reality. (1956) (Einstein,
1956)

In our theory, which rests on the intrinsically algebraic sheaf–theoretic
axiomatics of ADG (Mallios, 1998a,b), space-time as such, especially
in its classicalC∞-smooth guise, plays no operative role in the for-
mulation of the fcqv-E-dynamics (124). All that is of mathematical
import and physical significance in our scheme is the fcqv-E-field
( EΩi , EDi ) the connection part of which—the fcqv-dynamoEDi —being
of purely categorico algebraic character. All that is physically mean-
ingful in our model is (EΩi ≡ EE↑i , EDi ) and the dynamics (124) which it

193This quotation of Einstein can be found in Stachel (1991).
194In square brackets and nonemphasized are our own completions of the text to enhance continuity

and facilitate understanding.
195This quotation of Einstein can be found in Stachel (1991).
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obeys. Furthermore, the quanta of the fcqv-E-field, which have been
called causonsin (Mallios and Raptis, 2001, in press ), represent
the dynamical “elementary particles” of the (gauge) fcqv-potential
field EAi of quantum causality,196 and by their algebraico-categorical
dynamics theydefinethe quantum gravitational vacuum without be-
ing dependent in any sense on an ambient space-time—a background
stage that just passively supports their dynamics.197 At the same time,
one may think of

−→
Aut i EE↑i —the structure group ofEΩi where the

reticular connection 1-formEAi takes values—as the algebraic self-
transmutations of the causon defining some sort ofquantum causal
foam(Raptis and Zapatrin, 2001).198 Thus, we seem to find ourselves
in accord with the quotation of Feynman in the previous section, since

we actually avoid defining up-front the physical meaning of quan-
tum geometry, fluctuating topology, space-time foam, etc., and
instead we give geometrical meaning after quantization (alge-
braization).199 In broad terms, algebra precedes geometry, since
the (algebraic dynamics of the) quantum precedes (geometrical)
“space.”

In a similar vain, we note that, in the context of ADG, the fundamen-
tal difference noted at the end of subsection 2.3 between the notion of
connectionD—a purely algebraic notion since, for instance,A trans-
forms affinely (inhomogeneously) under the gauge group,200 and its
curvatureR(D)—a purely geometric notion since it transforms tenso-
rially under the automorphism group of the vector sheaf,201 becomes
very relevant here. For example, in connection with (124), we note
that EDi may be viewed as the generalized algebraic differential op-
erator in terms of which one sets up the fcqv-E-equations, while

196The reader should wait until our remarks on geometric (pre)quantization in subsection 5.4 where
we make more explicit this “fields←→particles (quanta)” correspondence.

197We argued earlier that the role the base topological causet—the fcqv-E-spaceEPi —plays in our
theory is merely an auxiliary one:EPi is a substrate or “scaffolding” that avails itself only for the
sheaf–theoretic localizations of the dynamically variable qausets; nothing else.

198In a Kleinian sense, the geometry of the causon—the quantum of the algebraic fcqv-dynamoEDi

representing dynamical changes of (local) quantum causality in (the stalks of, i.e., the sections of)
EE↑i ≡ EΩi —is encoded in the (structure) group

−→
Aut i EΩi of its incidence algebraic automorphisms.

199This remark hints atour maintaining that our theory is, to a great extent,already or innately quantum
(so that the usual formal procedure of quantization of a classical theory, like general relativity, in
order to arrive at a quantum theory of gravity—regarded as “quantum general relativity—is “begging
the question” when viewed from the ADG-based perspective of our theory). After subsections 5.3
and 5.4, this claim of ours will become more transparent.

200That is to say, it does not respect our local measurements of (i.e., the geometry of) the causon in
EAi (U ).

201That is to say, it respects our local measurements of the causon inEA i (U ).
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its curvature ERi ( EDi ) as the geometry (i.e., the solution “space”) of
those equations. Loosely speaking,D stands to R(D) as the “cause”
(algebra/dynamics) stands to the “effect” (geometry/kinematics).202

Indeed, in (Mallios and Raptis, 2002), and based on the abstract
version of the Chern–Weil theorem and the associated Chern iso-
morphismà la ADG, we similarly argued that the purely algebraic
notion of connectionD lies on the quantal side of the quantum divide
(Heisenberg Scnhitt), while its geometric, “observable” (i.e., mea-
surable) consequence—the curvatureR(D)—on the classical side.203

Moreover, in Mallios and Raptis (in press), on the basis of general
geometric pre-quantization arguments (Mallios, 1998a,b, 1999), we
saw how the algebraic causon—the quantum of the connectionEDi —
eludes our measurements, so that what we always measure is its field
strength ER( EDi ), never the connection itself. In a Bohrian sense, the
classical, geometrical (becauseA-respecting) field strength is the re-
sult of our measuring the quantum (becauseA-eluding), algebraic
connection.
In closing (ii), we would like to mention, also in connection with (i)

above, that even string theory, which purports to derive the classical
space-time manifold and Einstein’s equations from a deeper quantum
string dynamics, has recently focused on defining (space-time) points
and on deriving a topology for them by entirely algebraico-categorical
means not very different, at least in spirit, from ours (Aspinwall,
2002).

(iii) No topology and no metric on “space”: An apparent paradox from
categorical dynamics. We mention briefly the following apparently
paradoxical feature of our theory which has already been mentioned
and resolved in Mallios and Raptis (2001). While we started by cover-
ing the space-time regionX by the “coarse” open gaugesU inUi thus
we associated with the latter the base causal–topological spaceEPi and
interpreted them as coarse observations or “rough chartings” of the
causal relations between events inX (Mallios and Raptis, 2001), at
the end, that is to say, at the dynamical level, the dynamics of qausets
over EPi is gaugeUi -independent since it is expressed categorically
in terms of the finsheaf morphismsEDi .204 Thus, in the end the back-
ground space(time) seems to “disappear” from the physical processes
in the quantum deep as it plays no role in the gauge invariant dynam-
ics of qausets. That this is only apparently and not really paradoxical

202See footnote 177.
203Revisit footnote 44.
204Equivalently, the curvature finsheaf morphismERi ( EDi ) in (124) is gaugeUi -covariant.
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has been explained in detail at the end of Mallios and Raptis (2001).
Here, and in connection with footnote 104, we bring to the attention
of the reader that the finitarity index (the degree of localization of
our qausets) “i ” in (124) should not be mistaken as indicating that
EDi or its curvatureERi are intimately dependent on the gaugeUi , for,
as we repeatedly argued before,they are not.205 The index merely
indicates that our structures are discrete and that (124) is the finitary
analogue of the ADG-theoretic expression (53).206 The correspond-
ing statement thatthe localization index is physically insignificant
is precisely what it was meant in (Mallios and Raptis, 2001; Raptis
and Zapatrin, 2000, 2001) when we said thatthe incidence algebras,
whether they are taken to model discrete quantum topological spaces
proper (Raptis and Zapatrin, 2000, 2001) or their causal analogues—
qausets (Mallios and Raptis, 2001; Raptis, 2000a),are alocal struc-
tures(i.e., they are not vitally dependent on any preexistent or a priori
postulated and physically significant space(time)).

Now that we have shown both that the causal topology of the
base causetEPi plays no role in the dynamics of qausets (124) and
that differentiability comes from the incidence algebras in the stalks
of the curvedEΩi s, we are also in a position to return to footnote
20, the comparison betweenD and R(D) in 2.4, as well as to our
comments on the metricEρi in “about the stalk” in subsection 4.1, and
note that in our algebraic connection-based (i.e., gauge-theoretic)
scenario

fcqv-E-L-gravity does not describe the dynamics of a vacuum
space-time metric as such in the way the original theory (i.e.,
general relativity) does. Like the generalized differentialEDi , the
EAi metric Eρi is a finsheaf morphism, thus it is about the local
(stalk-wise) algebraic structure of the gauged gausets, not about
the underlying causal–topologicalEPi per se. Hence, on the face of
(124), we agree with Feynman’s hunch in subsection 3.1 that “the
fact that a massless spin-2 field can be interpreted as a metric was
simply a coincidence that might be understood as representing
some kind of gauge invariance.”

Of course, it is again plain that the finitarity index on the reticular met-
ric Eρi is of no physical (dynamical) significance since it, like the geo-
metrical notion of curvature, is anEA i -respecting finsheaf morphism.

205Quite on the contrary, as we said, since they are finsheaf morphisms, they show that they are
Ui -independent entities.

206As it were, the finitarity index shows that our theory is a concrete application of ADG to the locally
finite regime of qausets; it is of no other physical significance.
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Thus,Eρi , like ERi , lies on the classical (geometrical) side of the quan-
tum divide.207

5.2. Derivation of fcqv-E-L Gravity From an Action Principle

We wish to emulate the situation in the abstract theory and derive (124) from
the variation of a reticular, causal, and quantal versionEEH of the E-H action
functionalEH. In the same way that the latter is a functional on the affine space
A(+)

A (E↑) of (self-dual) LorentzianA-connectionsD onE↑ taking values in the space
A(X) of global sections ofA (65),

−→
EH i is a functional on the spaceEA(+)

i ( EE↑i )208 of
the (self-dual) fcqv-E-L-dynamosED(+)

i on EΩi taking values inEA i ( EPi ), as follows:
−→
EH i : EA(+)

i ( EΩi ) −→ EA i ( EPi ) (125)

reading “point-wise” in EA(+)
i ( EΩi )

EA(+)
i ( EΩi ) 3 ED(+)

i 7→
−→
EH i ( EDi ) := ER(+)

i ( ED(+)
i ) := tr ER(+)

i ( ED(+)
i ) (126)

where, plainly, ER(+)
i is a global section of the structure finsheafEA i of reticular

coefficients over the base causetEPi (ie, ER(+)
i ∈ EA i ( EPi )).209

At this point we recall the basic argument from subsection 3.3: to be able
to derive (124) from the variation (extremization) of

−→
EH i with respect toEDi ∈

EAi ( EΩi ), all we have to secure is that the derivative
˙︷ ︸︸ ︷−→

EH i ( EDi γ (t))|t=0, for a path
γ (t) in the reticular spin-Lorentzian connection spaceEAi ( EE↑i )(γ : R −→ EAi ( EΩi )),
is well defined. The latter means in turn that there should be a well-defined notion
of convergence, limit and, of course, a suitable topology on the structure sheafEA i

relative to which these two notions make sense.
We recall from (Mallios and Raptis, 2001; Raptis, 2000a,b; Raptis and Zapatrin,

2000, 2001) that the abelian (structure) subalgebrasEA i of the incidence algebras
EÄi modelling the qausets in the stalks of theEΩi s can then be construed as carrying
a (natural) topology—the so-calledRota topology—provided by theEÄi s’ structure
(primitive ideal) space (Gel’fand duality).210 With respect to the (now quantum

207As it should, since it isus—the observers—that carry on local acts of measurement on “it” (i.e., the
quantum system “space-time’) and obtainc-numbers in the process all of which are effectively en-
coded inρ. Indeed, geometry (and measurement) without a metric sounds as absurd as convergence
(and continuity) without a topology.

208We write EA(+)
i for EA(+)

EAi
. We met earlier EA(+)

i in connection with the definition of the reticular

moduli spacesEM(+)
i ( EE↑i ) in (120).

209In what follows, we will forget for a while the epithet “self-dual” (and the corresponding notation)
for the gravitational connection and its curvature. We will return to self-dualEDi s a bit later.

210In the next subsection we will comment further on the rich import that Gel’fand duality has in our
theory.
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causally interpreted) Rota topology, it has been shown that there is a well-defined
notion of (discrete) convergence and, in extenso, of limits (Breslavet al., 1999;
Raptis, 2000; Raptis and Zapatrin, 2000, 2001; Sorkin, 1991; Zapatrin, 1998).

Thus,
˙︷ ︸︸ ︷−→

EH i ( EDi γ (t))|t=0 is well defined.

5.3. Towards a Possible Covariant Quantum Dynamics for the Finitary
Spin–Lorentzian Connections

We have seen how general relativity can be cast as a Y-M-type of gauge theory
in finitary terms, that is to say, how it may be expressed solely as the dynamics of a
fcqv-spin-Lorentzian connection variable—the dynamo (EDi . These dynamos have
been alreadykinematically quantized(Mallios and Raptis, 2001) andgeometrically
(pre)-quantizedtocausons(Mallios and Raptis, in press)211 along the lines of ADG
(Mallios, 1998a,b, 1999).

In the present subsection we discuss the possibility of developing a covariant
path integral-type ofquantum dynamicsfor the finitary spin-Lorentzian dynamos
( EDi on the respectiveEE↑i = EΩi s. As a first step, we wish to emulate formally
the usual practice in the quantum gauge theories of matter (i.e., QED, QCD, and
higher dimensional Y-M theories of a semisimple and compact Lie structure group
G) whereby a covariant quantum dynamics is represented by a path integral over
the space of the relevant connections on the corresponding principal fiber bun-
dles over aC∞-smooth space-time manifoldM (a G = U (1)-bundle for QED, a
G = SU(3)-bundle for QCD andG = SU(N)-bundles for general Y-M theories).
Thus, in our case too, we intuit that the main object of study should be the following
“heuristic device”:

EZi =
∫
EAi ( EE↑i )

ei
−→
EH i d EAi (127)

where EAi ( EE↑i ) is the affine space of finitary spin-Lorentzian connectionsEDi on
the curved orthochronous Lorentzian finsheavesEE↑i = EΩi of qausets which is
thus being regarded as the (quantum) kinematical configuration space (of “fcqv-
dynamo or causon quantum histories’) of our theory. More precisely, because of
the local reticular gauge invariance of our theory, the actual physical configuration
space is the fcqv-analogueEMi ( EE↑i ) := EAi ( EE↑i )/

−→
Aut i ( EE↑i ) of the moduli space in

(103) that we defined earlier in (120), and it consists of finitary gauge-equivalent

211With a concomitant sheaf-cohomological classification of the corresponding associated curved
line sheavesL inhabited by these causons. We will return to make more comments on geometric
(pre)quantization in subsection 5.4.2.
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fcqv-connectionsEDi . We thus recast (127) as follows:

EZi =
∫
EMi

ei
−→
EH i d([ EAi ] −→

Aut i EE↑i ) (128)

where [ EAi ] −→
Aut i ( EE↑i ) denotes the gauge

−→
Aut i EE↑i -equivalence classes of fcqv-

gravitational connectionsEDi on EE↑i —the elements ofEMi ( EE↑i ).
In what follows we enumerate our anticipations and various remarks about

EZi in (128) by gathering information from both the canonical (i.e., Hamilto-
nian) approach to quantum general relativity and the covariant path integral (i.e.,
Lagrangian or action-based) approach to Lorentzian quantum gravity. In particu-
lar, and in connection with the former approach, we discuss issues arising from
Ashtekar’s self-dual connection variables scenario for both classical and quantum
gravity (Ashtekar, 1986) as well as from theirC∞-smooth loop holonomies—the
so-called loop formulation of (canonical) quantum gravity (Rovelli and Smolin,
1990)212—especially viewed under the functional analytic (C∗-algebraic) prism
of (Ashtekar and Isham, 1992; Ashtekar and Lewandowski, 1994). We thus com-
mence our exposition with a brief review of both the Hamiltonian (canonical) and
the Lagrangian (covariant) approaches to Lorentzian quantum gravity.

5.3.1. The Canonical (Hamiltonian) Approach: Ashtekar Variables

More than 15 years ago, Ashtekar (Ashtekar, 1986) proposed a new set of
variables for both classical and quantum general relativity essentially based on a
complex space-time manifold and a self-dual connection version of the Palatini
comoving 4-frame (vierbein) formulation of gravity. The main assumptions were
the following:

• A 4-dimensional, complex, orientable,C∞-smooth space-time manifoldM
of Lorentzian signature.
• The basic gravitational variableA+∞213 which is aso(1, 3)C-valued self-

dual connection 1-form.
• The vierbein variablee, which defines a vector space isomorphism between

the tangent space ofM and a fixed “internal space”M equipped with the
usual Minkowski metricη and the completely antisymmetric tensorε.A+∞
is self-dual with respect toε.214

212For reviews of the loop approach to quantum gravity and relevant references, the reader is referred
to (Loll, 1994; Rovelli, 1997).

213The index “∞” just indicates thatA is aC∞-smooth connection on M.
214More analytically and in bundle-theoretic terms (Note: most of the items to be mentioned in this

footnote should be compared one-by-one with the corresponding ADG-theoretic ones defined earlier
and the reader must convince herself that, ADG-theoretically, we possess all the classical smooth
vector bundle-theoretic notions and constructionswithout any notion ofC∞-smoothness being
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In the new variablesA+∞ ande, the gravitational action functional assumes
the following so-calledfirst-order form

Sash[A+∞, e] = 1

2

∫
M
ε(e∧ e∧ R+∞) (129)

which may be readily compared with the usual Palatini action

Spal[A∞, e] = 1

2

∫
M
ε(e∧ e∧ R∞) (130)

and directly see thatSash is Spal’s self-dual version.215 We also note that, upon
variation of bothSash andSpal with e, one obtains the vacuum Einstein equations
(i.e., thatA+∞ is Ricci-flat),

while upon variation withA(+)
∞ , one obtains the metric-compatibility condi-

tion forA(+)
∞ (i.e., that it is the gauge potential part of the Levi–Civita connection

of the metric).
The attractive feature of Ashtekar’s new variables is that in terms of them

one can simplify and write neatly the Hamiltonian constraints for gravity, thus one
obtains a clear picture of how to proceed and canonically quantize the theory `a la
Dirac. To revisit briefly the Hamiltonian approach, one assumes thatM factors into
two submanifolds:M =∑3×R,216 thus securing the 3+1 decomposition needed
to approach quantum gravity canonically. Then, one assumes as configuration
space of the theory the affine space3A+∞ of complex, smooth, self-dual,so(3)C-
valued connections3A+∞ on

∑3,217 and asphase spacethe cotangent bundle
T∗(3A+∞) coordinatized by canonically conjugate pairs (3A+∞,3 E∞)218 obeying

used. This observation will prove crucial in the sequel—see comparison between our ADG-based
finitary scheme and the usualC∞-approaches to nonperturbative canonical or covariant Lorentzian
quantum gravity that the present footnote will trigger after (140)), one letsT—equipped with a
pseudo-Riemannian metricη and fixed orientationO—be an “internal Minkowskian bundle space”
isomorphic to the tangent bundleTM. O andη define a nowhere vanishing global sectionε of
34T ∗. The aforesaid fiber bundle isomorphism is symbolized ase : T M −→ T , and its inverse
e−1 is the comoving 4-frame field (vierbein) mentioned above (by pushing forwarde one can also
define a volume formϕ on M , while TM inherits viae−1 the metricη from T ). η similarly defines
an isomorphism betweenT and its dualT ∗. Fortunately, in four dimensions,η andε determine
a unipotent Hodge-∗ operator:∗ : 32T −→ 32T . One then regards as basic dynamical fields in
Ashtekar’s theory the aforementioned spin-Lorentzian metric (i.e.,η-preserving) connection 1-form
A+∞ (whose curvatureR+∞ is a section of∧2T ⊕∧2T ∗ and satisfies relative to∗ the self-duality
relation:?R+∞ = R+ −∞) and the frame field e (which is aT -valued 1-form:e∈ Ä1(T )). (Of
course, one can also transfer viae−1 the connectionA+∞ from T to TM.)

215Plainly, R(+)
∞ in both (129) and (130) is the curvature of the (self-dual) connectionA(+)

∞ .
216Assuming also that the “spatial” or “spacelike” 3-submanifold

∑3 is orientable and compact.
217Thus, in this picture gravity may be thought of as anSO(3)C-gauge theory—the dynamical theory

of 3A+∞ in the connection space3A+∞. Shortly we will see that gravity is actually a “larger” theory
transformation-wise:it is an SO(3)C-gauge theory together with Diff(M)-constraints coming from
assuming up front that there is an external backgroundC∞-smooth space-time manifold.

218Where3E∞ is a smooth vector density representing a generalized electric field on
∑3.
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the following Poisson bracket relations219

{3A+∞,3 E∞} = δ3(x − y); (x, y ∈ 63) (131)

In terms of these variables, the Hamiltonian for gravity can be shown to be220

H (A, E) =
∫
∑3

(
1

2
λl εRE2+ iλsRE

)
d3x (132)

with λl andλs being Lagrange multipliers corresponding to the well-known lapse
and shift functions in the canonical formulation of gravity.

On the other hand, since the theory has internal (gauge)SO(3)C-symmetries
and external (space-time) Diff(M)-symmetries, not all points (classical states) in
the phase spaceT∗(3A+∞) can be regarded as being physical. This is tantamount
to the existence of the following five first-class constraints for gravity221

one Gauss divergence constraint (internal) :DE = 0

three spatial diffeos constraints (external) :RE = 0 (133)

one temporal diffeo constraint (external) :εRE2 = 0

which must be satisfied by the (classical) physical states.222 At the same time,DE,
RE, andεRE2 can be seen to generate local gauge transformations in the internal
gauge space, as well as63-spatial diffeos andR-temporal diffeos respectively in
the externalM = 63× R-space-time manifold,223 thus they transform between
physically indistinguishable (equivalent) configurations. It is important to note
here that pure Y-M theory also has the internal Gauss gauge constraint, but not the
other four external “space-time diffeomorphism” Diff(M)-constraints. Because of
this fact, Loll points out for example that “pure gravity may be interpreted as
a Yang–Mills theory with gauge groupG = SO(3)C, subject to four additional
constraints in each point of6224 (Loll, 1994). We will return to this remark soon.
One should also notice here that since the integrand ofH (A, E) in (131) is an
expression involving precisely these four external space-time Diff(M)-constraints,
the Hamiltonian vanishes on physical states.225 Since, as noted in footnote 221,H
is the generator of the smooth time evolution of63 in the space-time manifold M,

219In (131), we present indexless symplectic relations. The reader is referred to (Loll, 1994) for the
more elaborate indexed relations.

220Again, all indices, including the ones forA andE above, are omitted in (132).
221Again, all indices are suppressed for symbolic economy and clarity.
222In (133) the temporal-diffeomorphisms constraint is commonly known as theHamiltonian

constraint.
223The Hamiltonian constraint generates the smooth time evolution of63 in M .
224Which we call63 here.
225This is characteristic of gravity regarded as a gauge theory on aC∞-smooth space-time manifold

M , namely, Diff(M), which implements the principle of general covariance, is (part of) gravity’s
gauge (structure) groupG.
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one says (even at the classical level) that, at least from the canonical viewpoint,
gravity is “inherently” a no-time (‘time less’) theory.

A straightforward canonical quantization of gravity `a la Dirac would then
proceed by the following standard formal replacement of the Poisson bracket
relations in (131) by commutators

{A, E} = δ3(x − y) −→ [Â, Ê] = i δ3(x − y);
(
x, y ∈ 63

)
(134)

with the hatted symbols standing now for field operators acting on the unphysical
phase spaceT∗(3A+∞)226 which is suitably “Hilbertized.” The latter pertains es-
sentially to the promotion of the spaceF(3A+∞) = {9(A)} of C-valued functions
on 3A+∞ to a Hilbert spaceH of physical states. This is usually done in two steps:

• First, to take into account the gauge and diffeomerphism invariance of
the theory, one projects out ofF(3A+∞) all the wave functions lying in
the kernel of the corresponding operator expressions of the gravitational
constraints in (133). These are precisely the physical quantum states-to-be,
as they satisfy operator versions of the constraints (i.e., they are annihilated
by them). They comprise the following subspaceFp of (p)hysical wave
functions inF
Fp := {9(A) : D̂E9(A) = R̂E9(A) = ε R̂E

2
9(A) = 0} (135)

where the hatted symbols denote operators.
• Then, one promotesFp to a Hilbert spaceHp by endowing it with the

following hermitian inner product structure

〈92(A)|91(A)〉 :=
∫

3A+∞/G
9∗2(A)91(A)[dA]G (136)

thus essentially by insisting that the wave functions9(A) are square-
integrable with respect to〈.|.〉. However,so far one has not been able to find
a fullyG-invariant (i.e., SO(3)C-gauge and Diff(M)-invariant) integration
measure[[dA]G on 3A+∞/G.227 This is essentially the content of the so-
calledinner product problemin the canonical approach to quantum general
relativity.

226As can be read from Loll (1994) for instance, there are (technical) reasons for usingT∗(3A+∞) instead
of the physical cotangent bundleT∗(3A+∞/G) on the three-connection moduli space3A+∞/G. We
will comment on some of them subsequently when we emphasize the need to develop a differential
geometry on the moduli space of gauge-equivalent connections.

227Of course, the tough problem is finding a Diff(M)-invariant measure, not anSO(3)C one. Ingenious
ideas, involving abstract or generalized integration theory, have been used to actually construct
such a Diff(M)-invariant measure (Baez, 1994a,b). We will return shortly to comment a bit more on
abstract integration theory and generalized measures. Also, motivated by this remark about Diff(M)-
invariant measures, from now on we will abuse notation and identify the gauge (structure) groupG
of gravity only with its external smooth space-time manifold symmetries (i.e.,G ≡ Diff( M)) and
forget about its internal, “purely gauge,”SO(3)C-invariances.
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Before we move on to discuss briefly the covariant path integral approach to
quantum gravity, which, as we shall see, also encounters a similar “diffeomorphism-
invariant measure over the moduli space of connections” problem, we wish to
present some elements from the Ashtekar–Isham analysis of the loop approach to
canonical quantum gravity (Ashtekar and Isham, 1992; Ashtekar and Lewandowski,
1994; Rovelli and Smolin, 1990). Of particular interest to us, without going into
any technical detail, are two general features of this analysis: (i) the application
of a version of Gel’fand duality on the space of Y-M and (self-dual) gravitational
connections in a spirit not so different from how we use Gel’fand duality in our
algebraico–sheaf–theoretic approach to causal sets here, and, as a result of this
application and (ii) its pointing to a generalized integration theory over the mod-
uli space3A+∞/G in order to deal with the “Diff(M)-invariant measure problem”
mentioned in connection with the Hilbert space inner product in (136).

In Rovelli and Smolin (1990), used non-local, gauge-invariant Wilson loops—
the traces of holonomies of connections around closed loops in

∑3228—and found
physical states for canonical quantum gravity, that is to say, ones that are annihi-
lated by the aforementioned operator constraints. Remarkably enough, they found
that such states can be expressed in terms of knot and link-invariants (which them-
selves areC-valued functions on knots and links that are invariant under spatial
diffeos), thus they opened new paths for exploring the apparently intimate rela-
tions that exist between gauge theories, (quantum) gravity, knot theory and, in
extenso, the geometry of low-dimensional manifolds.229 Such promising new re-
search possibilities aside, what we would like to highlight here are certain features
in the aforesaid work of Ashtekar and Isham which put Rovelli and Smolin’s loop
variables on a firm and rigorous mathematical footing, and, in particular, opened
the way towards findingG-invariant measures (as well as generalized integrals to
go with them) that could help us resolve problems like the one of the inner product
mentioned above.

Our first remark concerns the general moduli spaceA∞/G of gauge theories
and gravity. We have seen above what a crucial role it plays in both the classical and
the quantum descriptions of these theories. For one thing, it is the classical configu-
ration space of the theories in their connection-based formulation. As we have said,
to get the classical phase space, one deals with the cotangent bundleT∗(A∞/G).230

228One defines a Wilson loop as follows:Wρ

A(+)(`) := tr exppo(
∮
`∈∑3 A(+)), wherè is a spatial loop

(in
∑3), ρ is a (finite dimensional, complex) matrix representation of the Lie algebrag of the gauge

groupG where the (self-dual) connectionA(+) takes values (in our case,so(3)C, and the index “po”
to exp denotes “path ordered” (Loll, 1994). For the sake of completeness, we note that Rovelli and
Smolin, based on Ashtekar’s new variables (A, e), actually defined an “adjoint” set of Wilson loop
variables that reads:Wρ

e (`) = tr [e(`) exppo(
∮
`∈∑3 A(+))].

229Refer to Baez and Muniain (1994) for a thorough exposition of the close interplay and the fertile
exchange of ideas between knot theory, gauge theory and (quantum) gravity.

230The elements ofT∗(A∞/G) are the classical physical observables of the theories.
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In their quantum versions, the moduli spaceA∞/G is supposed to give way to the
Hilbert spaceL2(A∞/G, dµ) of C-valued, square-integrable functions onA∞/G
with respect to some measuredµ, which is in turn expected to beG-invariant.
However, because ofA∞/G’s infinite dimensionality, non-linear nature and rather
“complicated” topology,231 there are significant (technical) obstacles in finding
(i.e., actually constructing) such adµ. Moreover, in the canonical approach, the
loop variables of Rovelli and Smolin provide us with a set of manifestlyG-invariant
configuration observables, but we lack analogous gauge-invariant momentum ob-
servables not least because the differential geometry of the moduli spaceA∞/G
(and in extenso of the cotangent bundleT∗(A∞/G) has not been well developed
or understood.232 These are some of the technical difficulties one encounters in
trying to develop classicalC∞-smooth differential geometric ideas on spaces of
gauge-equivalent connections and exactly because of them one could “justify” the
ADG-theoretic perspective we have adopted in the present paper.233

Now, what Ashtekar and Isham did to deal with some of the problems men-
tioned in the previous paragraph is to “downplay” the structure of the spaceA∞/G
per se and rather work directly with the functions that live on that space.234 Thus,
they defined the so-called holonomyC∗-algebraC = FA∞/G of C-valued func-
tions onA∞/G generated by Wilson loopsW(`) like the ones mentioned in footnote
228.235 C was straightforwardly seen to be abelian, thus by using the well-known
Gel’fand-Naimark representation theorem they identifiedC with the commutative
C∗-algebraF of continuousC-valued functions on a compact Hausdorff topolog-
ical spaceM ≡ Spec(C)—the so-calledGel’fand spectrum ofC.236 In turn, every
(continuous and cyclic) representationF of C ≡ F has L2(Max(C)) as carrier

231This refers to the usualC∞ (Schwartz) topology (Mallios, 1986).
232Principally motivated by this ellipsis, and as we noted earlier, (Ashtekar and Lewandowski, 1995)

explores further the possibility of developing classical (i.e.,C∞-smooth) differential geometry on
A∞/G.

233The reader is referred to Mallios (manuscript in preparation) for a more elaborate ADG-theoretic
treatment of moduli spaces of connections vis-`a-vis gauge theories and gravity.

234This is well in line with the general philosophy of ADG which we have repeatedly emphasized
throughout this paper and according to which, in order to gather more information and gain more
insight about (the structure of) “space’—whatever that may be—one should look for an “appro-
priate” algebra that encodes that information in its very structure. Then, to recover “space” and
perform the ever-so-useful in physics calculations (i.e., “geometrize” or “arithmetize” the abstract
algebraic theory so to speak), one should look for suitable representations of this algebra.

235It must be noted however thatreal connectionsA were employed in Ashtekar and Isham (1992).
The reader should not be concerned about this technical detail here.

236The points ofSpec(C) are kernels of (irreducible) representations ofC toC (i.e., homomorphisms
of C toC commonly known as “characters’), with the latter being the “standard” abelian involutive
algebra. In turn, these kernels are maximal ideals inC, so that equivalently one writes Max(C) for
M ≡ Spec(C) (in the sequel, we will useSpec(C), M, and Max(C) interchangeably). Max(C)
carries the standard Gel’fand topology and the elements ofF are continuous with respect to it.
(Memo: the Gel’fand topology onM is the weakest (coarsest) topology with respect to which the
functions inF are continuous (Mallios, 1986).)
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Hilbert space with respect to some regular measuredµ on M and, plainly, the
representatives of theC-valued Wilson loop operators inC act on the elements9
of L2(M) by multiplication.

Thus, whileA∞/G is the classical configuration space, quantum states9

naturally live on Max(C) and can be thought of as “generalized” gauge-equivalent
connections. In fact, Rovelli and Smolin conceived of a deep correspondence
between the spaces of (functions on) gauge-equivalent connections and (functions
on) loops, which could be mathematically implemented by the following heuristic
integral “device”:

T[9(`)] :=
∫
A∞/G

tr (exppo

∮
`

A9([A]G)dµ([A]G) (137)

called the (non-linear and in general noninvertible237) loop transform—a variant
of the usual functional-analytic Gel’fand transform.238 Again, inT(9) we witness
the need to find measures onA∞/G.239

This last remark brings us to the main point we make about the importance
of the (abelian)C∗-algebraic point of view (and the application of the Gel’fand
spectral theory that goes with it) on the moduli space of connections adopted by
Ashtekar and Isham based on the Rovelli–Smolin loop representation of Ashtekar’s
new variables in the context of canonical quantum general relativity:

the holonomyC∗-algebraic perspective onA∞/G makes it clear that onemust adopt
a “generalized integration theory240 in order to cope with integrals such as (136) and
(137) and with the measures involved in them.

The idea to use “generalized” or “abstract measures” becomes “natural” in
Ashtekar and Isham’s work as follows: as we noted above, the holonomyC∗-
algebraC = F(A∞/G) is first transcribed by the Gel’fand-Naimark representation
to theC∗-algebraF of bounded, continuous,C-valued functions onC’s spectrum
Max(C) having for carrier Hilbert spaceL2(Max(C), dµ). How can we realize the
measure dµ and the integral with respect to it?

237The loop transform is supposed to carry one from the connection to the loop picture, and back

via T
−1

. However, forT
−1

to exist, a set of (algebraic) constraints—the so-called Mandelstam
constraints—must be satisfied by Wilson loops (Ashtekar and Isham, 1992; Loll, 1994).

238The Gel’fand transform may be viewed as a generalized Fourier transform (Mallios, 1986). The
reader is encouraged to read from (Ashtekar and Isham, 1992) a suggestive comparison made
between the loop and the Fourier transform. For an ADG-theoretic use of the Gel’fand transform, in
caseA is a topological algebra sheaf (the “canonical” example of a unital, commutative topological
algebra being, of course,C∞(M)—see remarks on Gel’fand duality subsection in 5.5.1), the reader
is referred to (Mallios, 1998a,b).

239In (137), [A]G represents a class ofG-equivalent connections inA∞—an element of the moduli
spaceA∞/G.

240The reader should refer to (Baez, 1994a,b) for a relatively recent treatment of generalized Diff(M)-
invariant measures on moduli spaces of nonabelian Y-M and gravitational connections.



P1: GMX

International Journal of Theoretical Physics [ijtp] pp937-ijtp-470300 September 26, 2003 16:31 Style file version May 30th, 2002

1574 Mallios and Raptis

The aforesaid idea of “generalized measures” can be materialized in theC∗-algebraic
context by identifying

∫
[·] with a stateon F—a (normalized, positive) linear form

onF , which is a member ofF∗. Then one thinks of (f ) as an abstract expression of∫
f dµ( f ∈ F ). In turn, having this integral in hand, the inner product onL2(Max(C))

can be realized as〈92|91〉 =
∫
9∗291dµ = s(9∗291).241

We now move on to discuss briefly the covariant path integral (Lagrangian)
approach to quantum gravity, so that afterwards we can comment “cummulatively”
from an ADG-theoretic viewpoint on the heuristic integralEZi appearing in (128)
in comparison with what we have said about both the canonical and the covariant
quantization schemes for gravity.242

5.3.2. The Covariant (Lagrangian) Approach: The Diff(M)-Invariant Path Integral
Measure Problem

One of the main disadvantages of any approach to the quantization of gravity
based on the canonical formalism is the latter’s breaking of full covariance by
the unphysical 3+1 space-time split that it mandates. In the Ashtekar approach
for instance, one must choose a time slicing by arbitrarily foliating space-time
into spacelike hypersurfaces on which the self-dual connection variablesA+∞—
the main dynamical variables of the theory—are defined and canonical Poisson
bracket (classical) (131) or commutator (quantum) (134) relations are imposed.243

The basic idea of a path integral quantization of gravity is not to force any such
physically ad hoc 3+1 split, thus retain full covariance of the theory.

In a Lagrangian (self-dual) connection-based formulation of gravity in aC∞-
smooth space-time manifold (like Ashtekar’s in (129), but in all four space-time
dimensions), the path integral would be the following heuristic object

Z∞ =
∫

4A(+)
∞

ei [4S (+)
ash] dA (138)

where the integral is taken now over all the (self-dual)C∞-connections4A(+)
∞ over

the whole 4-dimensional space-time manifoldM , and4S (+)
ash is the 4-dimensional

version of the Ashtekar action (129) of the (self-dual) smooth connection variable
4A(+)
∞ .244 Of course, again because of theG ≡ Diff( M)-invariance of the theory,

241With 9∗2 the complex conjugate of92 (Note: the reader should not confuse this *-star with the

linear dual *-star inF∗.
242Since both of these schemes are essentially based on the classical differential geometry of theC∞-

smooth space-time maniforldM (i.e., they belong to category 1 in the prologue—in other words,
they are “C∞-smoothness conservative”) which ADG evades, such a comparison is relevant here
and well worth the effort.

243Also, by such a 3+1 decomposition one secures a well-defined Cauchy problem for the dynamical
equations (global hyperbolicity).

244However, it must be emphasized here that a 3+1 space-time split is in a sense also implicit here.
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one would expect the “physical” path integral to be

Z∞ =
∫

4A(+)
∞ /G

ei [4S (+)
ash] d([A]G) (139)

which, however, to make sense (even if only “heuristically’!) care must be taken
to make sure that one integrates over a single member4A(+)

∞ from each gauge
equivalence class [4A(+)

∞ ]G in 4A(+)
∞ /G. Among the aforementioned problems of

developing differential (and now integral) calculus on the moduli space of (non-
abelian) gauge (Y-M) theories and gravity, is the fact thatπ : A∞ −→ A∞/G,
regarded as a principalG-bundle, is nontrivial, that is to say, it has no continuous
global sections, which in turn means that there is no unique gauge choice, no
unique fixing or selecting a single4A(+)

∞ from each [4A(+)
∞ ]G in 4A(+)

∞ /G. This is
essentially the content of the well known Gribov ambiguity in the usualC∞-fiber
bundle-theoretic treatment of gauge theories.245

All in all, however, again it all boils down to finding a measured([A]G)—in
fact, a Diff(M)-invariant one, since (139) involves smooth connections on aC∞-
space-time manifold M—on the moduli space4A(+)

∞ /G. Thus, we see how both
the nonperturbative canonical and the covariant approaches to quantum gravity,
whose formulation vitally depends on the classical differential geometric appa-
ratus provided by theC∞-smooth manifold (in fact, by the structure coordinate
ring C∞(M)) and its structure group Diff(M), encounter the problem of finding a
Diff( M)-invariant measure on their respective moduli spaces. Below we argue how
the ADG-theoretic basis, on which our finitary, causal, and quantal vacuum Ein-
stein gravity (124) and its possible covariant path integral quantization (128) rest,
bypasses completely significant obstacles that these “conventional” approaches246

Z∞ in (138) is normally regarded as atransition amplitudeand the dynamical transition that
it pertains to is between “boundary spatial configuration 3-geometries’—say,81[3A(+)

1 ]∑3
2

and

82[3A(+)
2 ]∑3

2
—with the bulk 4-space-time geometry interpolating between them. One usually

writesZ∞|82
81
≡< 82|81 >= ∫ 82

81
ei [4S(+)

ash] dA.
245The reader should refer to Mallios (1998b) for a more elaborate, albeit formal, treatment, from

an ADG-theoretic perspective, of the Gribov ambiguity `a la (Singer, 1978). What must be briefly
mentioned here is that the ADG-theoretic treatment of the Gribov ambiguity in Mallios (1998b)
marks the commencement of the development of a full-fledged differential geometry—again of
a nonclassical, non-C∞-smooth type—on the moduli space of gauge-equivalent connections. For
instance, one could take as starting point for this development the following motivating question:
what is the structure of the“ tangent space” T(OD ,D) to an orbitOD of a connectionD in the
affine space AAE of A-connections on a vector sheafE? For example, in subsection 3.4 we saw
that, ADG-theoretically,T(OD ,D) can be identified withS⊥D (98) and, as a result,T(M(E),OD)
with T(OD ,D)’s orthogonal complement (i.e.,SD !) (101). However, for the latest results from the
most analytical ADG-theoretic treatment of moduli spaces of connections, the reader should refer
to Mallios (manuscript in preparation).

246“Conventional” here means “classical,” in the sense that all these approaches are based on the usual
differential geometry ofC∞-manifolds. As we time and again said before, these are approaches that
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to quantum general relativity encounter. Altogether, we emphasize that our ap-
proach is genuinely backgroundC∞-smooth space-time-free, fully covariant and
that, based on the fact that arguably all diseases (i.e., singularities, unrenormal-
izable infinities and other classical differential geometric anomalies) come from
assuming up-frontM , it is doubtful whether any “C∞-conservative” attempt to
quantize general relativity (by essentially retainingM) will be able to succeed.247

In connection with the last remarks, cogent arguments coming from the au-
thors (Finkelstein, 1988, 1991; Jacobson, 1995) further support the position that
the attempt to quantize gravity by directly quantizing general relativity (i.e., by
trying to quantize Einstein’s equations to arrive at the quantum of the gravita-
tional force field—the graviton) is futile, if one considers the following telling
analogy: It is as if one tries to arrive at the fine structure of the water molecule
by quantizing the Navier-Stokes equations of hydrodynamics. We definitely agree
with this position; however, as we saw before and we will crystallize in the next
subsection, we would not go as far as to maintain that to arrive at a genuinely
quantum theoresis of gravity one should first arrive at a quantum description of
(the background) space-time structure itself, forspace-time does not exist(i.e., it
has no physical meaning). Rather, going quite against the grain of theories that
advocate either a “continuous” (classical) or a “discrete” (quantum) space-time,
we will hold that a genuinely covariant approach to quantum gravity should in-
volve solely the dynamical fields (and their quanta) without any dependence on
an external “space-time substrate,” whether the latter is assumed to be “discrete”
or “continuous.” This is what we mean by a “fully covariant” (and “already quan-
tum”) picture of gravity:only the dynamical gravitational field (and its quanta),
and no ambient (external/background) space-time which forces one to consider its
(i.e., the space-time’s) quantization, exists.

5.4. Cutting the Gordian Knot: No C∞-Smooth Base Space-Time Manifold
M , no Diff( M), No Inner Product Problem, No Problem of Time, a “Fully
Covariant,” “Purely Gauge-Theoretic” Lorentzian Quantum Gravity

In the present section we show how our finitary, ADG-based scheme for
“discrete” Lorentzian quantum gravity totally avoids three huge problems that the
differential manifold M,248, or more precisely, its “structure group”G ≡Diff( M)249

belong to the category 1 of “general relativity and manifold conservative” scenarios mentioned in
the prologue.

247Even more iconoclastically, in the following subsection we will maintain thatour scheme is already
quantum, so that the quest for a quantization of gravity is in effect “begging the question.”

248Or ADG-theoretically, the assumption ofC∞M for structure sheafA.
249Here the term “structure group” is not used exactly in the usual principal bundle and gauge-theoretic

sense. Rather fittingly, it pertains to the “symmetries” of the structure sheaf A, which in the classical
case is identified withC∞M .
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presents to both the canonical and the covariantC∞-manifold-based approaches
to quantum gravity.

First, we would like to state up front the main lesson we have learned from
ADG, which lesson, continuing the trend started in Mallios and Raptis (in press),
we wish to promote to the following slogan:250

Slogan 2. One can do differential geometry without using any notion of calculus;
or what amounts to the same, without using at all (background) differential (i.e.,
C∞-smooth) manifolds (Mallios, 1998a,b, 1999, 2001a,b, 2002, manuscript in
preparation; Mallios and Raptis, 2001, in press; Mallios and Rosinger, 1999, 2001).

Thus, in the present paper, where ADG was applied to the finitary-algebraic
regime to formulate a causal and quantal version of vacuum Einstein-Lorentzian
gravity, no classical differential geometric concept, construction, or result, and,
of course, no background (or base)C∞-smooth space-time manifold, was used.
Precisely in this sense, our formulation of (124) and its covariant quantum version
(128) is genuinely background manifold-free orC∞-smoothness-independent.

Another basic moral of ADG which is invaluable for its direct application
to (quantum) gravity and (quantum) Y-M theories, and which nicely shows its
manifest evasion of the classical differential geometry ofC∞-manifolds, can be
expressed diagrammatically as follows

CDG ≡ C∞-Manifold
(a)−→

A≡C∞X
Tangent Bundles

(a)−→
B≡C∞X

C∞-Vector Fields

(c′) ↑ A ≡ C∞X (X ⊂ M) (d′) ↑ A ≡ C∞X (X ⊂ M) (c′) ↓C∞-connections
C∞−derivatives

ADG ≡ arbitary baseX
arbitaryAX−→

(a′)
Vector Sheaves

(A-connections)
sheaf morphisms−→

(b′)
Differential Equations

(140)

which we can put into words again in the form of a slogan:

Slogan 3. Unlike the Classical Differential Geometry (CDG), whose (concep-
tual) development followed the path

CDG≡ Smooth Manifolds
(a)−→Tangent bundles

(b)−→
Smooth Vector Fields

(b)−→Differential Equations(≡ Physical Laws)

schematically described in (140), and which can be read as follows:the smooth
manifold was made for the tangent bundle, which in turn was made for the vec-
tor fields, which were finally made for the differential equations (modelling the

250This is the second slogan in the present paper. Recall the first one from the beginning of section 4.
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local laws of classical physics;251) in contradistinction, the development of ADG
followed the path

ADG −→(a) Vector Sheaves−→(b) Differential Equations

which can be read as follows:ADG refers in an algebraicocategorical way di-
rectly to the dynamical fields—represented by pairs such as “(E ,D)’—without the
intervention (neither conceptually nor technically) of any notion of (background
geometric manifold) space(time), or equivalently, independently of any interven-
ing coordinates. In other words, ADG deals directly with the differential equa-
tions (the laws of physics), which now are “categorical equations” between sheaf
morphisms—theA-connectionsD acting on the (local) sections of vector sheaves
E under consideration.Of course, one can recover CDG from ADG by identify-
ing one’s structure sheafA with C∞M 252 thus, in effect, “descend” from abstract,
algebraic in nature, vector sheaves to the usual smooth vector or frame (tangent)
bundles over (to) the geometrical base space-timeC∞-manifold M(c′, d′).

5.4.1. Avoiding the Problems of Diff(M) by Avoiding M

Below, we mention three problems that our finitary-algebraic, ADG-based
perspective on quantum gravity manages to evade completely. We choose to pro-
nounce these problems via a comparison between the canonical and the covariant
C∞-manifold-based approaches to quantum general relativity described above, and
our ADG-theoretic locally finite, causal, and quantal Lorentzian vacuum Einstein
gravity. In particular, we initiate this comparison by basing our arguments on the
contents of footnote 214, which makes it clear what the essential assumptions
about theC∞-approaches to quantum gravity are, and it also highlights their char-
acteristic absence from our ADG-founded theory. In this way, the value of the
slogans 1–3 above can be appreciated even more.

1. The fundamental assumption of all the nonperturbativeC∞-conservative
approaches to quantum gravity, whether Hamiltonian or Lagrangian, is
that there is a background geometrical space-time which is modelled after
a C∞-smooth base manifold M. Thus, the point-events of M are coordina-
tized byC∞-smooth functions whose germs generate the classical structure
sheafA ≡ C∞M ; hence, the natural “structure group” of all thoseM-based
scenarios isG ≡ Diff( M).

2. The next assumption (of great import especially to the canonical ap-
proach via the Ashtekar variables) we can read directly from footnote

251In the concluding section we will return to comment further on the fact that the assumption of
a differential manifold ensures precisely that the dynamical laws of physics obey the classical
principle of locality.

252(a) in (140).
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214: there is a (frame) bundle isomorphism e between TM and an “inter-
nal” Minkowskian bundleT ,253 whose inversee−1 defines a local vier-
bein (4-frame) field variable onM254 and secures the faithful transference
of the classicalC∞-differential geometric structures, such as the smooth
(self-dual) connectionsA(+)

∞ , the smooth Lorentzian metricη, the volume
form ϕ, the smooth vector fields (derivations) and covectors (differential
forms) etc, fromT to TM.255 In a nutshell,e−1 ensures thatTM comes
fully equipped with the classical (tangent bundle) differential geometric
apparatus.

3. When it comes to (especially the canonical) dynamics, one can easily
see how thisC∞-space-time bound language gives independent physical
existence and “reality” to the background (i.e., “external” to the dynamical
fields themselves) geometrical smooth space-time continuum itself, by
statements such as,

In this approach256 the action of diffeomorphism group gives rise to two
constraints on initial data: the diffeomorphism constraint, which generates
diffeomorphisms preserving the spacelike hypersurface, and the Hamiltonian
constraint, which generates diffeomorphisms that move the surface in a time-
like direction.257

In the canonical Ashtekar approach, this is concisely encoded in the as-
sumption that the smooth 4-frame field e is an independent (local) dynam-
ical variable along with the (self-dual) smooth spin-Lorentzian connection
1-formA(+)

∞ .258

By striking contrast, our finitary, causal, and quantal ADG-based approach
to Lorentzian vacuum Einstein gravity assumes neitherM259 (and, as a result,
no Diff(M) either), but perhaps more importantly, nore. ADG in a sense cuts

253We may coine the (local) “external” LorentzianC∞-manifold M soldering form. It may be thought
of as the “umbilical cord” that ties (and feeds!) all the differential geometric constructions used
in nonperturbative canonical or covariant quantum general relativity with (from) the background
smooth manifoldM .

254By abusing notation, we also denote thevierbeinby e.
255Hence our calling e above a (local) “external” LorentzianC∞-manifoldM soldering form. (Recall

also from footnote 214 thatη, which is pulled back bye−1 from T to TM, effects the canonical
isomorphism betweenTM—inhabited by vectors/derivations tangent toM , and its dualT M∗—
inhabited by covectors/forms cotangent toM .)

256That is, the canonical approach to quantum general relativity `a la Ashtekar.
257Taken from the preface of the bookKnots and Quantum Gravitywhere Ashtekar and Lewandowski

(1994) and Loll (1994) belong. The constraints mentioned in this excerpt are precisely the four
“external”C∞-smooth space-time manifold Diff(M)-constraints in (133).

258And recall from (129) and (130) that the vacuum Einstein equations are obtained from deriving the
Palatini-Ashtekar action functionals with respect toe.

259Thus it gives the smooth space-time manifold no independent physical (dynamical) reality “external”
to the dynamical gravitational gauge field itself (represented by the connection).
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the “umbilical cord” (e) that ties (and sustains differential geometrically) theC∞-
conservative approaches to (by) the background space-time manifoldM , and it
concentrates directly on (the physical laws for) the dynamical objects—in our
case, the (self-dual) fcqv-dynamosED(+)

i —that live and propagate on “it.” All in
all we must emphasize that

the sole dynamical variable in our scheme is the reticular (self-dual) spin-Lorentzian
connection variableED(+)

i (in fact, the fcqv-E-L-field (EE↑i , ED↑i )) and ADG enables us
to formulate directly the dynamical equations for it without having to account for (i.e.,
without the mediation and support of) a background geometrical smooth space-time
manifold M . In this sense, our ADG-theoretic, connection-based approach is more
algebraic and more “pure gauge-theoretic” (i.e., “fully covariant”—see below) than
the approaches to gravity which are based on the classicalC∞-differential geometry
of the smooth space-time manifold (e.g., Ashtekar’s). At the same time, since there is
no “external” space-time manifold, there is no need either to perform the necessary
for the canonical quantization procedure 3+1 space-time split which, as we contended
earlier, breaks manifest covariance. Furthermore, Diff(M) is now replaced, in a Kleinian
sense (Mallios, 2002), by the structure groupEAuti , of EAi -automorphisms ofE↑i (i.e.,
the group of the reticular transformations of the causon field itself—its dynamical self-
transmutations so to speak260). All in all, our approach is fully (gauge) covariant.261

Now that we have stated, and analyzed in glaring contrast to theC∞-conservative
canonical and covariant approaches to quantum general relativity, the three slogans
underlying our fcqv- approach to Lorentzian vacuum Einstein gravity, we are in a
position to show how our theory simply evades the following three caustic issues
for nonperturbative quantum gravity:

1. The inner product problem. In the canonical approach, this refers to the
problem of fixing the inner product in the Hilbert space of physical states
by requiring that it is invariant under Diff(M). As noted earlier, in effect it
is the problem of finding a Diff(M)-invariant measure. The same technical
problem (i.e., the problem of finding a Diff(M)-invariant measure) essen-
tially persists in the fully covariant path integral quantization approach to

260It must be stressed that, according to the geometric (pre)quantization axiomatics (Mallios, 1998b,
1999, 2001b, 2002, manuscript in preparation) that we subjected our causon fieldEDi , or better, its
associated fcqv-dynamo E-L fieldEE↑i , ED↑i in Mallios and Raptis (in press), we can identify the latter
with its quanta (“particles”)—the causons (e.g., states of “bare” or free causons, when regarded as
bosons—the “carriers” of the dynamical field of quantum causality, are represented by sections of
line bundlesELi associated with theEP↑i s (Mallios and Raptis, press)). Thus, one can also think of
EAuti as acting directly on the dynamical quanta of quantum causality—the causons. Shortly, we will

revisit some basic geometric (pre)quantization arguments from Mallios (2001b) to further support
these remarks.

261We are tempted to call our scheme, after Einstein, “unitary” field theory, since all that there is in
it are the dynamical fields (plus their associated quanta and their automorphisms) and no ambient,
external space-time present. Because we have formulated gravity purely gauge-theoretically (i.e.,
as the dynamics solely of the connection), we may alternatively coin our scheme “pure gauge” field
theory.
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quantum general relativity (138) and (139). Since our theory is genuinely
C∞-smooth manifold M-free, thus also manifestly Diff(M)-independent,
it simply avoids the inner product problem. We thus write

No smooth manifoldM ⇒ No Diff(M) ⇒ No inner product problem (141)

However, it must be said that if one employs finite dimensional (Hilbert)
space representations for the incidence algebras modelling qausets as in
(Raptis and Zapatrin, 2001; Zapatrin, 1998)262 and one regards the latter
spaces as inhabiting the stalks of associated finsheaves to theEP↑i , or even
if one just works with the aforesaid associated line sheavesELi , of states
of “bare” or free causons, the issue of finding well-defined integration
measures on them still persists. Generalized integration theory (Bourbaki,
1969) andRadon-type of measureson vector sheaves similar to the afore-
said “cylindrical” ones employed by Ashtekar and Lewandowski (using
Gel’fand’s spectral theory) in the context of the holonomyC∗-algebraic ap-
proach to canonical quantum general relativity (Ashtekar and Isham, 1992;
Ashtekar and Lewandowski, 1994, 1995), are currently under intense de-
velopment by ADG-theoretic means (Mallios, manuscript in preparation).
Such measures are expected to figure prominently in (and make mathe-
matical sense of) heuristic (path) integrals like (136)–(139) and, in the
finitary case, like (127) and (128).263

2. The problem of time. Again in the context of canonical quantum general
relativity, this refers to the problem of requiring that the dynamics is en-
coded in the action of Diff(M) on the (Hilbert) space of physical states.
Here too, our evasion of this problem is rather immediate:

No smooth space-time manifold M ⇒ No Diff(M) ⇒ No problem of time

(142)

For, as we have repeatedly argued above, our theory deals directly with
the dynamical physical objects (EDi , EE↑i ) themselves and their (self-)trans-
formations (’structure symmetries’)EAuti , and does not posit the existence
of an external (background) space-time continuum, let alone regard the

262But note that in these works the incidence algebras are of a topological, not a directly causal, nature.
263Indeed, of special interest to ADG is to develop a general and mathematically sound integral calculus

on the moduli spaces of gauge-equivalent connections on vector sheaves (those in particular that
appear in the ADG-theoretic treatment of Y-M theories and gravity (Mallios, 1998a,b, 2001a))
again,independently of the classical, differential manifold-based, theory(Mallios, 2002). Such an
abstract or generalized integration theory could be regarded as the ADG-theoretic analogue of the
generalized integration and measure theory that has been developed (albeit, still in theC∞-context!)
in the literature (Baez, 1994a,b).
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latter as being physically significant in any way.264 In our scheme, EAuti
acts directly, via its representations alluded to in 1 above, on the associated
(line) sheaves of bare causon states (Raptis and Zapatrin, 2001).265

3. The problem of“ full covariance”: As in 2 above, this problem essentially
comes from assuming that the external, background space-time manifold
is a physical entity—and not paying attention just to the dynamical objects
(fields and their particles) that live on that “space-time” which, anyway, are
the only “physically real” (“observable”) entities. One is tempted to say
here that the reason for this (problem) was in effect the lack of having thus
far an appropriate framework to develop differential geometry—at least
to the extent that ADG for instance has developed—different from that
of the classical theory. In this respect, we may still recall here Einstein’s
“confession” in (Einstein, 1949):

. . .Adhering to the continuum originates with me not in a prejudice, but arises
out of the fact that I have been unable to think up anything organic to take its
place. . .

which we will mention again in subsection 6.1 in connection with the
singularities that assail the classical theory. In other words, the desirable
scenario here is

the formulation of the (quantum) gravitational dynamics solely in terms of
the connection D, or more completely, in terms of the “full,” “unitary” or
“pure” E-L field (E↑, D), and nothing else—in particular, without referring
to an external (background) space-time (whether the latter is assumed to be
discrete or a continuum).

As we saw earlier, in the canonical (Hamiltonian) approach to quantum
general relativity there is a manifest breaking of covariance by the nec-
essary 3+1 dissection of the (external) space-time continuum into space
and time. Also, in a supposedly covariant path-integral-type of quantiza-
tion scenario for Lorentzian gravity like (138) or (139), although there is
no such an explicit external space-time split, there still persists however
(built into the very CDG-formalism employed) the assumption of an ex-
ternal (background) geometricalM experiencing, for instance, problems
like 1.266

264The reader should refer to the concluding section where further criticism is made of the base space-
time manifoldM and its differentiable automorphisms Diff(M), as both are regarded as the last
relics of an absolute, ambient, inert (nondynamical), ether-like substance.

265See further remarks on geometric (pre)quantization that follow shortly.
266Let alone that in the actual implementation and interpretation of the path integral as a dynamical

transition amplitude in the kinematical (moduli) space of gravitation 4-connections, “boundary 3-
geometries,” which break full covariance, are implicitly fixed at the end-points of the otherwise
indefinite integral (see footnote 244).
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5.4.2. A Brief Note on Geometric (Pre)quantization

Now that we have argued about how our theory can evade completely the inner
product (Hilbert space) problem and the problem of time essentially by avoiding
altogether the backgroundM and its “structure group” Diff(M), as well as how
it may used to formulate a “fully covariant” (quantum) dynamics for finitary and
causal vacuum Einstein-Lorentzian gravity, we would like to say a few words about
another concrete application of ADG which further supports those arguments.
This application concerns the subject of the so-calledGeometric (Pre)quantization
(GPQ) (Mallios, 1998b, 1999, 2001b).267

We read from (Mallios, 2001b) that the main aim of GPQ is to arrive at a quan-
tum model of a relativistic particle—which is assumed to be in the spectrum (i.e., a
so-called quantum particle excitation) of a corresponding quantum field—without
having to first quantize the corresponding classical mechanical system(Simms
and Woodhouse, 1976). In other words, GPQ aspires to a quantum description
of elementary particles by referring directly to their (“second quantized”) fields
(i.e., without the mediation of the procedure of first quantization of the classical
mechanical or field theory and of the conventional Hilbert space formalism that
accompanies it). On the other hand, it is well known that GPQ heavily rests on
the usual differential calculus ofC∞-smooth (symplectic) manifolds268; hence, it
is no surprise that ADG could be used to generalize the foundations of GPQ, thus
gain more insight into the theory.

For instance, as we witnessed above, ADG completely circumvents the un-
derlyingC∞-smooth space-time manifold and deals directly with the (algebraic)
objects that live on “it.” These objects are the dynamical fields themselves (with-
out recourse to an external base space-time manifold) or equivalently, in a purely
second quantized sense, the elementary particles (quanta) of these fields. In fact,
the main objective of applying ADG-theoretic ideas to GPQ, basically motivated
by certain fiber bundle axiomatics originally laid down by Selesnick in Selesnick
(1983), is to show thatelementary particles—the quanta of the dynamical fields—
can be classified according to their spin in terms of appropriate vector sheavesE .
In this respect, the main result of ADG applied to GPQ is that

states of bare (free) bosons can be identified with local sections of line sheavesL,269

while states of bare (free) fermions with local sections of vector sheavesE of rank
greater than 1 (Mallios, 1998b, 1999, 2001b).

267In what follows, we do not intend to present any technical details from (Mallios, 1998b, 1999, 2001b);
rather, we would like to give a brief outline of certain syllogisms and results of this application
that further vindicate the aforesaid evasion by our ADG-based theory of the three problems of
the background space-time manifold-based quantum general relativity theories whether they are
Hamiltonian (canonical) or Lagrangian (path integral). As noted in footnote 260, we gather results
mainly from Mallios (2001b).

268See remarks of Isham from Isham (2002) in the concluding paragraph of this section on GPQ.
269That is to say, vector sheaves of rank 1.
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To arrive at that result, the first author had to posit the following identifications,
or better, make the following bijective correspondences (“equivalences”), which
we readily read from Mallios (2001b):

1. States of elementary particles can be associated with (local) sections of
appropriate vector sheavesE , the latter being provided in the classical
theory by the sheaves of sections of vector bundles over the space-time
manifold Mà la Selesnick (1983).270

2. An elementary particle—the irreducible constituent of matter—
corresponds uniquely, in a second quantized sense, to the quantum of
a particle field271; one writes:

physical particle ←→ particle field

(143)

3. A field, hence its quanta (elementary particles), is completely determined
by its states. The latter, within the axiomatic framework of ADG, corre-
spond to local sections of suitably defined vector sheavesE . All in all, one
writes

particle ←→ field ←→ states←→ local sections←→ vector sheaf

(144)

with the latter identification (local sections←→ vector sheaf) being, as a
matter of fact, a well-known theorem in sheaf theory.272

4. In fact, as we saw earlier, by “field” ADG understands the pair (E , D).273

270By Selesnick’s work (Selesnick, 1983), these bundles correspond to finitely generated projective
modules over the topological algebraC∞(M) of the smooth space-time manifoldM . ADG’s prim-
itive assumption of a general structure sheaf A other thanC∞M generalizes Selesnick’s bundles to
vector sheavesE that are locally freeA-modules of finite rank, as we saw before.

271The notion of “field” being regarded here as an irreducible (ur) element of the theory, in the same way
that Einstein thought of it asan independent, not further reducible, fundamental concept(Einstein,
1956).

272That is to say, any (vector) sheaf is completely determined by its (local) sections (Mallios, 1998a,b).
In fact, in Mallios (1998a) this has been promoted to the following important slogan:a sheaf is its
sections. So, there is a very close physico-mathematical analogy lurking in (144):in the same way
that a sheaf is completely determined by its sections, an elementary particle—i.e., the quantum of
a field—is completely determined by its states.

273This vector sheaf–theoretic conception of a field by ADG comes as an abstraction and vector
sheaf–theoretic generalization of Manin’s fiber bundle-theoretic definition of the Maxwell’s field of
electrodynamics as the pair (LMax,DMax) consisting of a (U (1)) connectionDMax on a line bundle
LMax of “photon states” (Manin, 1988). It is also important to remark here that, semantically, ADG
regards the connectionD as the dynamical field proper, while E as the carrier (state) space of
(the particles or quanta of) the field. In fact, bothD andE are needed for formulating the laws
of nature (“differential equations”) asE provides us with the sections (states of the particle—the
“Being” of the particle so to speak) on whichD acts (i.e., dynamically transforms the particle—the



P1: GMX

International Journal of Theoretical Physics [ijtp] pp937-ijtp-470300 September 26, 2003 16:31 Style file version May 30th, 2002

Finitary, Causal, and Quantal Vacuum Einstein Gravity 1585

5. Finally, and very briefly, starting from work by Selesnick in (Selesnick,
1983), the first author was led to realize that one can model the collection of
quantum states of free elementary particles byfinitely generated projective
A-modules274 and then, depending on their spin, classify them to free
bosons whose states comprise projective A-modules of rank 1, andfree
fermionshaving for states elements of projectiveA-modules of rank greater
than or equal to 2.275 Then, the transition to locally finiteA-modulesE
of finite rank (i.e., the vector sheaves of ADG) was accomplished by
using the Serre–Swan theorem (suitably extended from the Banach algebra
A = C0(M) on a compact Hausdorff manifoldM to general topological
non-normed (non-Banachable) algebras such asC∞(M)) in order to go
from the aforesaid finitely generatedC∞(M)-modules to smooth vector
bundles onM . Then the latter can provide us with the (local) sections we
need to build ourES.

6. All in all, the general result of applying ADG to GPQ is the following
“categorical” statement: (Mallios, 1998b, 1999; Mallios and Raptis, in
press)

every (free) elementary particle is (pre)quantizable (i.e., it admits a (pre)quantizing
line sheaf).

It must be noted here that the sheaf-cohomological classification of our fcqv-
E-L fields (EDi , EE↑i ) and their quanta (causons) in Mallios and Raptis (2002) is
essentially an application of the results of the ADG-theoretic perspective on GPQ
above to the finitary, causal, and quantal regime. In toto, and this is the main reason
we briefly alluded to ADG vis-`a-vis GPQ here,

being able, by circumventing ADG-theoretically the classical externalC∞-space-time
manifoldM , to refer directly to the dynamical objects (fields), we can show not only that
(the dynamics of) these objects are “fully covariant,” but also that they are “intrinsically”
of a quantum nature,276 so that the quest for a “blindfolded,” head-on quantization of
space-time and general relativity277 appears to be begging the question. Indeed, since
our scheme is “fully covariant,” “inherently quantum278 and it certainly does not arise
from “quantizing somehow the classical theory,” we strongly doubt whether actually

“Becoming” of the particle so to speak). It is conceptually lame, perhaps even “wrong,” from the
ADG-theoretic perspective to think ofE (“state”) apart fromD (“transformation of state”) and vice
versa. The concept of field in ADG, as the pair (E , D), is a “holistic,” “unitary” or “coherent” one,
not separable or “dissectible” into its two constituents.

274Finiteness pertaining to the finite dimensionality of the representations of the particles” compact
structure (symmetry) gauge group.

275In particular, by takingA to beC∞(M) (Mallios, 2001b).
276That is, dealing directly and exclusively with the propagating field is equivalent to dealing directly

and solely with its dynamical quantum (particle).
277That is, of the dynamics of the smooth gravitational field (whether this is represented by the metric

or the connection-cum-frame field) propagating on aC∞-space-time manifold.
278In fact, we are tempted to regard these two characterizations of our theory (i.e., “fully covariant”
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quantizing a classical theory is physically meaningful at all.279 Thus, with respect to the
ADG-based theory for fcqv-E-L gravity propounded here, to this last question whether
quantizing a classical theory (in our case, general relativity) is physically meaningful
at all, one might respond by remarking thatthis always depends on the type of theory
that one employs in order to describe the physical laws through the corresponding
(differential) equations.

The last remarks would strike one who is used to the idea that one should
be able to arrive at a quantum theory of gravity by quantizing somehow general
relativity (i.e., by employing a formal quantization procedure involving the usual
quantum mechanical concepts and mathematical structures such as “observables,”
Hilbert spaces etc while still retaining the classical calculus-based framework for
both an external space-time and the dynamical laws for the now quantized fields on
it), as being at best odd, if we also quote the following passage from a celebrated
textbook that has nurtured generations and generations of theoretical physicists
(Landau and Lifshitz, 1974):

Quantum mechanics occupies a very unusual place among physical theories: it contains
classical mechanics as a limiting case, yet at the same time requires280 this limiting
case for its own formulation.

the emphasized “requires” being here the “operative word’—precisely the one
we have challenged and doubted in the present paper.281 For, as it was noted
at the end of subsection 5.3.2, we already have strong indications that trying
to quantize head-on general relativity is perhaps not the right way to a quan-
tum theory of gravity (Finkelstein, 1988, 1991; Jacobson, 1995). In a nutshell
then, we doubt that quantum gravity is, or better, will prove to bequantized
gravity.

and “intrinsically quantum’) as being equivalent, for ADG refers directly to the dynamical fields
and their quanta. Some strong conceptual resonances with Einstein’s vision of a unitary field theory
(which can “explain” quantum phenomena) are pretty obvious here.

279For instance, since first quantization is totally bypassed by GPQ, there is prima facie no need
for reasoning “conventionally” (i.e., by using Hilbert spaces, “observables” and the rest of the
conventional jargon, methods, and technical baggage of quantum mechanics) about causons and
their dynamics. In fact, the correspondence principle advocated initially in the literature (Raptis and
Zapatrin, 2000, 2001) about the incidence algebras modelling discrete and quantum topological
spaces should by no means be regarded as a “consistency” or “physicality check” of our theory (i.e.,
as if our theoryshouldyield classical gravity as a “low energy or weak gravitational field limit” in
the same way that the other discrete space-time or continuum-based approaches to quantum gravity
are expected to). From the purely ADG-theoretic point of view, immediate contact with the classical
theory is established simply by settingA ≡ C∞M .

280Our emphasis.
281In our case, one should substitute the word “mechanics” by “gravity” or even by “general relativity”

in the quotation above in order to get a better feeling of the point we wish to make. (Of course, this
is an imaginary, “wishful thinking” situation in which we are talking about quantum gravity as if it
has already been formulated!)
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We would like to close this discussion of the ADG-theoretic perspective on
GPQ with some very pertinent remarks of Isham in his latest paper (Isham, 2002)282

which emphasize precisely how the (geometric) quantization of a classical theory
is fundamentally (and quite a priorily, ad hoc, thus inappropriately—especially for
quantum gravity research) based on the classical differential geometry of smooth
manifolds (essentially because the conventional quantum theory itself, which we
apply when we wish to quantize a classical theory, is based on the manifold model
for space-time283).

. . . In general, [when we start from a classical theory and then “quantise” it], the config-
uration space (if there is one)Q for a classical system is modelled mathematically by a
differentiable manifold and the classical state space is the co-tangent bundleT∗Q. The
physical motivation for using a manifold to represent Q again reduces to the fact that we
represent physical space with a manifold. . . Thus, in assuming that the state space of a

classical system of the formT∗Q we are importing into the classical theory a powerful
a priori picture of physical space: namely, that it is a differentiable manifold.284 This
then carries across to the corresponding quantum theory. For example, if “quantization”
is construed to mean defining the quantum states to be cross-sections of some flat vector
bundle over Q, then the domain of these state functions is the continuum space Q. . .

This is more or less how (second) “quantization” was originally construed fiber
bundle-theoretically in (Selesnick, 1983) and then was treated ADG-theoretically
to suit GPQ ideas—albeit, in the characteristic absence of aC∞-smooth base space-
time continuum (domain)—in (Mallios, 1998b, 1999, 2001b) and, in the finitary
space-time and gravity case, in Mallios and Raptis (in press). From this point
of view, this is another indication that our finitistic theory for vacuum Einstein-
Lorentzian gravity here may be regarded as being “already quantized” (better,
“inherently quantum’)—albeit, not at all “conventionally” in Isham’s sense of the
word (which means that one applies the usual quantum theory, with its classical
manifold conception of space and time, to an already-existing classical theory).

5.4.3. Remarks on Einstein’s “New Ether” and Unitary Field Theory vis-à-vis
“Full Covariance”

Here we would like to bring together certain ideas that were expressed
above—in particular, in connection with the full covariance of our theory, the
identifications (143) and 144) in the context of geometric (pre) quantization, as
well as with some allusions made earlier to our hunch that our scheme is “already

282The excerpts below are taken from subsection 2.1.1 in Isham (2002).
283See again related comments in our discussion of the use ofR andC in our theory in subsection 5.1.
284“There may be cases [like those arising in the context of geometric quantization theory] whereS is

a symplectic manifold that is not a cotangent bundle; for example,S = S2. However, I would argue
that the reasonS is assumed to be amanifoldis still ultimately grounded in ana priori assumption
about the nature of physical space (and time).” (Our addition is in square brackets.)
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quantum,” as it were, not in need of quantizing (i.e., applying quantum theory to)
the classical theory of gravity (general relativity)—and some of Einstein’s search-
ing thoughts about a new conception of “ether” in the light of his continuous unitary
field theory, singularities and the quantum paradigm.285 We will see how Einstein
(i) tried to respect as much as he could general relativity which posits an ether-like
space-time background in the form of the differential manifold and the smooth
metric field imposed on this space-time continuum, (ii) always kept in mind the
earlier abolition of the material ether by special relativity so that he was careful
not to attribute mechanical properties to the ambient geometrical space-time con-
tinuum,286 and (iii) was deeply impressed by the discontinuous actions of (matter)
quanta, and he intuited—at times in an “oxymoronic” way which reflects precisely
the opposite tension in his mind between the continuous/geometrical actions of
(special and) general relativity and the discrete/algebraic ones of quantum theory—
a new kind of “ether” intimately related to the space-time continuum which may
be cumulatively referred to asthe continuous unitary field. Then, we will discuss
the affinities and the fundamental differences between the latter, continuum space-
time metric field-based (geometrical) and our ADG-theoretic, connection-based
“fully covariant” and “inherently quantum” (reticular–algebraic) vacuum Einstein-
Lorentz gravity. Along with the Einstein references at the back, in the sequel we
borrow some of Einstein’s quotations and various ideas about this rebirth of the
notion of ether from Kostro (2000).

We commence with a quotation of Einstein, as early as 1924, in which, in
spite of the abolition of the “material” and “mechanical” luminipherous ether by
the special theory of relativity already almost two decades earlier, he insists that in
the context of a continuous field theory on a space-time continuum the notion of
ether (even if a generalized, nonmechanistic or nonmaterial one) is physically quite
indespensible. For example, he concludes the article “Über denÄther” (Einstein,
1991) as follows:

. . .But even if these possibilities should mature into genuine theories, we will not be
able to do without the ether in theoretical physics, i.e., a continuum which is equipped
with physical properties; for the general theory of relativity, whose basic points of view
surely will always maintain, excludes direct distant action. But every contiguous action
theory presumes continuous fields, and therefore also the existence of an “ether.287

285By unitary field theory we do not refer so much to the more well known, life-long endeavor of
Einstein to unify gravity with electromagnetism and regard material particles as being special states
of condensed energy of (i.e., “singularities” or “discontinuities” in) the (continuous) unified field
(Bergmann, 1982), as to his general intuition—which is of course closely related to his well-known
unitary field theory project—that all physical actions (including quantum matter) must be described
in terms of (continuous) fields. However, below we are also going to comment on unified field
theory in the more popular sense of the term.

286In a sense, field theory is not mechanistic.
287While, already 4 years earlier (Einstein, 1983a), he had stressed the “ether imperative” in physics

as follows:. . .The ether hypothesis must always play a part in the thinking of physicists, even if
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Therefore, for Einstein, the space-time continuum, supporting continuous
fields, provides a new ether paradigm. At the same time, he readily and repeatedly
denied the independent physical existence of space(time) apart from the continuous
field and the (in his own words) “physical continuum” (i.e., the ether) that supports
or “carries” it, much as follows:

. . .According to general relativity, the concept of space detached from any physical
content does not exist. The physical reality of space is represented by a field whose
components are continuous functions of four independent variables—the coordinates
of space and time. It is just this particular kind of dependence that expresses the spatial
character of physical reality. (Kostro, 2000)288

and

. . . If the laws of this field are in general covariant, that is, are not dependent on a par-
ticular choice of coordinate system, then the introduction of an independent (absolute)
space is no longer necessary. That which constitutes the spatial character of reality is
simply the four-dimensionality of the field. There is no “empty” space, that is, there is
no space without a field. (Kostro, 2000)289

and, in a sense that was emphasized throughout the present paper, he essentially
maintained that (the) space(time) continuum and, concomitantly, the (new) ether
is inherent in the (gravitational) field290:

. . .No space and no portion of space can be conceived of without gravitational po-
tentials; for these give it its metrical properties without which it is not thinkable at
all. The existence of the gravitational field is directly bound up with the existence of
space. . . (Einstein, 1983a)

also

. . .according to the general theory of relativity even empty space has physical qualities,
which are characterized mathematically by the components of the gravitational potential.
(Kostro, 2000)291

and

. . .Thus, once again “empty” space appears as endowed with physical properties, i.e.,
no longer as physically empty, as seemed to be the case according to special relativity.
One can thus say that the ether is resurrected in the general theory of relativity, though
in a more sublimated form. (Kostro, 2000)292

only a latent part.”
288Page 175 and reference therein.
289Again, page 175 and reference therein.
290Which, unlike in our algebraic, connection-based theory however, he identified with (the components

of) the metric tensorgµν
291Again, page 111 and reference therein.
292Page 111 and reference therein.
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furthermore

. . .There is no such thing as empty space, i.e., a space without field. Space-time does
not claim existence on its own, but only as a structural quality of the field...” (Einstein,
1954)

and

. . . space has lost its independent physical existence, becoming only a property of the
field...” (Einstein, 1956)293

while, for the sake of operationality or instrumentality (i.e., for the existence of
measuring rods and clocks)294

. . .According to the general theory of relativity, space without ether is unthinkable; for
in such space, not only would there be no propagation of light, but also no possibility
of existence for standards of space and time (measuring rods and clocks), nor therefore
any space-time intervals in the physical sense. . .” (Einstein, 1983a)

Thus, eventually, he was led to make the following (telling for us) conceptual
identification:

. . .Physical space and the ether are only different expressions for one and the same
thing...” (Kostro, 2000)295

Moreover, keeping the identification above in mind, we note that Kostro, in (Kostro,
2000)296, expresses concisely how this new ether may culminate in the formulation
and serve as the basic underlying concept of a unified field theory (in the more
popular sense), as follows:

. . .The last step in the development of the relativistic concept of the ether would be
the creation of a unified field theory in which a unification of gravitational and elec-
tromagnetic interactions is achieved and in which matter consisting of particles would

293This brings to mind the remarks, albeit in the context of the flat space-time (quantum) field theory
of matter, of Denisov and Logunov: “. . .Minkowski was the first to discover that the space-time,
in which all physical processes occur, is unified and has a pseudo-Euclidean geometry. Subsequent
study of strong, electromagnetic, and weak interactions has demonstrated that the pseudo-Euclidean
geometry is inherent in the fields associated with these interactions. . .Pseudo-Euclidean space-
time is not a priori, i.e., given from the start, or having an independent existence. It is an integral
part of the existence of matter,. . . it is [always] the geometry by which matter is transformed. . .”
(Denisov and Logunov, 1983). Indeed, back in subsection 5.1.1, and shortly in our comments on
Gel’fand duality (5.5.1), we argue how the geometrical structure of what one might call “space-
time” (including its topology and differential structure) is inherent in the algebraic–dynamical field
of quantum causality in the same way that the geometrical notion of curvature is already inherent
(ultimately, derives from) the dynamical connection field, which is the sole physically meaningful
entity in our theory.

294And this shows just how important for the physical interpretation of the theory Einstein thought the
operational foundations of general relativity are.

295Page 174 and reference therein.
296Bottom of page 105 and top of page 106.
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constitute special states of physical space. Thus far, the attempts to develop such a theory
have been unsuccessful, the reason lying not in physical reality, but in the deficiencies
of our theories. It would be ideal to develop such a unified field theory in which all the
objects of physics would come under the concept of the ether. Einstein pointed out this
problem at the very beginning of his article297: . . .one can defend the view that this

notion [i.e., the ether] includes all objects of physics, since according to a consistent
field theory, ponderable matter and the elementary particles from which it is built also
have to be regarded as “fields” of a particular kind or as particular “states” of space.

This prompts us to cast, in complete analogy to the ADG-theoretic identifica-
tions in the context of geometric (pre)quantization in (143) and (144), Einstein’s
conceptual identifications above as a r´esumé of his unitary field theory program,
as follows:

elementary particles/matter quanta←→ states of the continous unitary field←→ states of the spacetime continuum

∥∥∥∥
states of the new ether

(145)

In comparison with our identifications in (144), we note that since our ADG-
theoretic perspective on finitary, causal, and quantal vacuum Einstein-Lorentzian
gravity completely evades the smooth background space-time continuum and
is based solely on the fcqv-E-L fieldEDi , our (arguably more quantal, because
reticular-algebraic) version of Einstein’s new ether above could be taken to be
the “carrier” of this causon field, namely, the vector sheafEE↑i itself. The latter, in
close analogy to the inextricable relationship between the ether, the (continuous)
space(time), and the (gravitational) field that Einstein intuited, but with the promi-
nent absence of an external, backgroundC∞-space-time and our undermining of
the physical role played by the smooth gravitational metric fieldgµν supported by
it, cannot be thought of independently of the fcqv-gravitational connection that it
carries and vice versa.298

Now, since Einstein was well aware of the problem of singularities that plague
his geometric space-time continuum-based theory of gravity299, and at the same
time he was “in awe” of the (successes of the) quantum revolution, he on the one
hand asked,

. . . Is it conceivable that a field theory permits one to understand the atomistic and
quantum structure of reality? (Einstein, 1956)

and on the other, quite paradoxically if we consider the conceptual importance
that he placed on the continuous field and the space-time continuum (i.e., the new

297Einstein’s article Kostro is referring to is “Über denÄther” (Einstein, 1991).
298See again footnote 273 about this “holistic” or, quite fittingly, “unitary” ADG-theoretic conception

of the gravitational connection and the vector sheaf (of states of causons in our finitary theory) that
carries it—our version of Einstein’s “new ether.”

299See quotations of Einstein subsequently and our discussion in the epilogue.
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ether) supporting it, he repeatedly doubted in the algebraic light of the quantum the
very geometrical ether (i.e., theC∞-smooth space-time continuum and the smooth
metric fieldgµν that it supports) that he so feverously propounded in the quotes
above.300 For instance, until the very end of his life he doubted the harmonious
coexistence of the (continuous) field together with its particles (quanta) in the light
of the singularities that assail the space-time continuum, much as follows:

. . .Your objections regarding the existence of singularity-free solutions which could
represent the field together with the particles I find most justified. I also share this
doubt. If it should finally turn out to be the case, then I doubt in general the existence of
a rational and physically useful continuous field theory. But what then? Heine’s classical
line comes to mind: “And a fool waits for the answer.”. . . (1954) (Stachel, 1991)

How can we explain and understand this apparently “paradoxical” and “self-
contradictory” stance of his against the space-time continuum vis-`a-vis singulari-
ties and the quantum?301 Perhaps we can understand his apparently “circular” and
“ambiguous” attitude if we expressed the whole “oxymoron” in a positive way,
as follows: we believe that Einstein would have readily abandoned the continuous
field theory and the geometric space-time continuum of general relativity in view
of the “granular” actions of quantum theory if he had an “organic302 finitistic–
algebraic theory to take its place. Alas, again in his own words just a year after he
concluded the general theory of relativity and at the very end of his life:

. . .But we still lack the mathematical structure unfortunately. (1916)303

and

. . .But nobody knows how to obtain the basis of such a [finitistic–algebraic] theory.”
(1955)304

300See quotations in subsection 5.1 and more extended ones in the literature (Mallios and Raptis, 2001,
2002).

301That is, on the one hand, to argue for the geometrical space-time continuum, in the guise of the
new ether, which is inherent in the continuous unitary field representing the field together with
its quanta—the particles that may in turn be conceived as “singularities in the field,” and at the
same time on the other, exactly due to those singularities (e.g., the infinities of fields right at their
point-particle “sources’) of the manifold and the discontinuous, algebraically represented actions
of quanta, to urge us to abandon the geometrical continuous field theory and look fora purely
algebraic theory for the description of reality(Einstein, 1956; Mallios and Raptis, 2001)—one
whosestatements are about a discontinuum without calling upon a continuum space-time as an aid
and according to whichthe continuum space-time construction corresponds to nothing real(1916)
(Mallios and Raptis, in press; Stachel, 1991).

302See quotation from Einstein (1949) and in subsection 6.1.
303For the whole quotation, see Mallios and Raptis (in press).
304This is the last sentence, in the last section of the last appendix ofThe Meaning of Relativity

(Einstein, 1956) appended in 1954. The whole quotation can be found directly at the end of Mallios
and Raptis (2001).
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We think that ADG, especially in its particular finitistic–algebraic application
here to Lorentzian vacuum Einstein gravity, goes some way towards qualifying as
a candidate for the (mathematical) theory that Einstein was searching for. Since
we are talking about Einstein’s unitary field theory and the mathematics that he
was searching for in order to implement it, we give below a very fitting passage
which concludes Ernst Straus” reminiscences of Einstein in Straus (1982):

. . .Einstein’s quest for the central problem for the ultimate correct field theory is gener-
ally considered to have failed. I think that this did not really surprise Einstein, because
he often entertained the idea that vastly new mathematical models would be needed, that
possibly the field-theoretical approach through the kind of mathematics that he knew
and in which he could do research would not, could not, lead to the ultimate answer305,
that the ultimate answer would require a kind of mathematics that probably does not
yet exist and may not exist for a long time. However, he did not have the slightest doubt
that an ultimate theory does exist and can be discovered.”

We sum up this discussion of Einstein’s new ether by commenting on and
counterpointing some remarks of Peter Bergmann and Ludwik Kostro in (2000)306

which apparently maintain that what Einstein had in mind when he talked about
this new ether in the context of unitary field theory was not theC∞-smooth space-
time manifold per se, but the extra structures (such as the metric, for example) that
are imposed on it.

First, Kostro asked:307

. . .Which mathematical structure of contemporary theoretical physics represents the
entity Einstein called “the new ether”?

to which Bergmann replied,

. . . In the last decades of his life Einstein was concerned with unitary field theories of
which he created a large number of models. So I think he was very conscious of the
distinction between the differential manifold (though he did not use that term)308 and the
structure you have to impose on the differential manifold (metric, affine or otherwise)
and that he conceived of this structure, or set of structures, as potential carriers of
physical distinctiveness and including the dynamics of physics.

Now, whether it is fortunate or unfortunate to use for the latter the term like ether? I
think simply from the point of view of Einstein and his ideas that in the distinction
between the differential manifold as such and the geometrical structures imposed on it
we could, if we want, use the term ether for the latter.

305See remarks by Bergmann and Kostro that follow shortly; especially Kostro’s words in footnote
313 about the mathematics that Einstein knew and used in order to model his unitary field theory.

306Pages 164 and 165.
307In a talk titled Outline of the history of Einstein’s relativistic ether conceptiondelivered at the

International Conference on the History of General Relativity, Luminy, France (1988) (Kostro,
2000).

308Einstein most of the time used the term(space-time) continuum(our footnote).
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and to which, in turn, Kostro added,

I am certain that Bergmann was right when he claimed that the differential manifold
as such, which is used to model space-time without imposing upon it such structures
as metrics, etc. cannot be treated as a mathematical structure representing Einstein’s
relativistic ether.

Bergmann was right, because the four-dimensional differential manifold as such
is a mathematical structure of too general a nature, and it cannot physically define
distinctive features of the space-time continuum without imposing metrics and other
structures upon it. It is too general, because it can serve as an arena or background
for any macroscopic physical theory (and even perhaps a microscopic one, because the
debate over the status of the differential manifold in microphysics is ongoing). By the
act of imposing metrics (i.e., the recipe for measuring space and time intervals) and
other structures upon it, the structure enriched in such a way turns into something that
represents distinctive physical features of the real space-time continuum. . .

We partially agree with Bergmann and Kostro insofar as their comments above en-
tail that the background differential space-time manifold itself is devoid of physical
significance and that what is of physical importance is the “geometrical” objects
that live on this base arena which, in Bergmann’s words, “include the dynamics of
physics.” On the other hand, from the novel perspective of ADG, and we believe
that both Bergmann and Kostro would agree with us had they been familiar with
the basic tenets of ADG, we maintain that:

1. In general relativity, the smooth space-time manifold serves as thecarrier
of the structures imposed on it—after all, this is how the structures like
metric, affine (Levi–Civita) connection etc acquire the epithet “smooth”
in front and becomesmooth metric, smooth connection, etc.309 As such, it
can still be perceived as a passive, a priorifixed by the theorist, absolute,
ether-like substance which sets the classically unequivocal “condition or
criterion of differentiability” for the dynamical variations of these “phys-
ical” structures imposed on it.310 For, surely, if Einstein did not have the
backgroundC∞-space-time at his disposal, the (classical) differentials that
the latter provides one with and the rules of the mathematical theory known
as (classical) differential geometry (calculus) of manifolds that these dif-
ferentials obey, how could he write the dynamical laws for the aforesaid
extra physical structures? And, arguably, in a Wheelerian sense,no the-
ory is a physical theory unless it is a dynamical theory.Thus, the usual
differential calculus provided Einstein with the basic mathematical tools

309With the important clarification, however, that it is a rather common mistake (made nowadays
especially by theoretical physicists) to think that the metric was assigned (originally by Gauss and
Riemann) on the manifold itself. Rather, it was imposed on (what we now call) the (fibers of the)
tangent bundle (tangent to whatever “space” they used as base space)! (revisit footnote 20). Thus,
the commonly used termspace-time metriccan be quite misleading.

310See our comments on the relativity of differentiability in the epilogue.
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which enabled him to write the dynamical equations for his continuous,
“ethereal” fields.

2. As noted above, one should not forget that Einstein’s dissatisfaction with
the geometrical space-time continuum (manifold) came basically from
two sources: the singularities that assail general relativity and, of course,
the discontinuous and algebraic character of quantum mechanical actions.
In fact, at the very end of his life, and in the context of his unitary field
theory, he came to intuit that these two “problematic,” when viewed from
the space-time continuum perspective, sources may be in fact intimately
related:311

. . . Is it conceivable that a field theory permits one to understand the atomistic
and quantum structure of reality? Almost everybody will answer this question
with “no.” But I believe that at the present time nobody knows anything
reliable about it. This is so because we cannot judge in what manner and how
strongly the exclusion of singularities reduces the manifold of solutions. We
do not possess any method at all to derive systematically solutions that are
free of singularities. . .

ADG, as applied here (and in Mallios and Raptis, 2001, in press) to a
locally finite, causal, and quantal vacuum Einstein gravity, “kills both
birds above with one stone”: on the one hand, it evades theC∞-manifold
and “engulfs” or “absorbs” singularities into whichever structure sheaf of
generalized arithmetics (or coordinates) one chooses to employ in order to
tackle the physical problem one wishes to study (Mallios, 2002; Mallios
and Raptis, manuscript in preparation; Mallios and Rosinger, 2001),312 and
on the other, it offers us an entirely algebraic and finitistic way of doing
(the entire spectrum of the usual) differential geometry (Mallios, 1998a,b;
manuscript in preparation; Mallios and Raptis, 2001, in press; Mallios and
Rosinger, 1999). All in all, it is our contention that Einstein (implicitly)
questioned the very (pseudo-)Riemannian differential geometry, which, in
turn, fundamentally relies on the differential space-time manifold.

3. From the ADG-based perspective of the present paper,there is nothing
physical about either an external background space-time (be it discrete
or continuous) or about the metric structure that we impose on it. On
these grounds alone, Bergmann and Kostro’s contention above that these
concepts may be regarded as representing Einstein’s new ether appears to
be unacceptable. On the other hand, we believe that our entirely algebraic
conception of the (gravitational) connection can be seen as the sole dy-
namical variable in a quantal theory of Lorentzian gravity. Fittingly then,

311The following quotation can be found again in the last appendix of (Einstein, 1956). It is the extended
version of the one given a few paragraphs above.

312Again, for more comments on singularities, the reader should go to the epilogue of the present
paper.
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the (associated) vector sheaf (of states of causons), which are not soldered
(i.e., localized) on anyC∞-smooth space-time manifold whatsoever, may
be taken to be as the ADG-theoretic analogue of Einstein’s “new ether”:
it is the carrier of the fcqv-E-L field.

4. Finally, in view of the words of Feynman and Isham in the beginning of
the present work, as well as what has been shown, partially motivated by
these (or rather, “postanticipatorily”), in the present paper,we simply have
to disagree with Kostro’s contention that there is still a possibility that
the smooth manifold can serve as a (space-time) background for a micro-
physical theory—in particular, in the (feverously sought after) quantum
theory of gravity. Although, admittedly, Einstein did not know and use the
differential geometry of smooth manifolds the way we do today (e.g., fiber
bundle theory),313 he still had the tremendous physical insight to anticipate
and foreshadow subsequent thinkers and workers in quantum gravity, like
Feynman and Isham for example, who have been led by their own quests
to conclude thattheC∞-smooth model of space-time fares poorly, to put
it mildly,314 in the quantum (gravity) regime.

5.4.4. Brief Remarks on “The Matter of the Fact”

Since we have just commented on Einstein’s unitary field theory, since in
causet theory there has been a strong indication lately that one can derive matter
fields directly from causets (Rideout and Sorkin, 2000), and also since our scheme
so far has focused solely on pure vacuum gravity (i.e., without the inclusion of mat-
ter actions and other gauge force fields), we conclude this subsection by making a
very short comment on the possibility of including matter and other gauge field ac-
tions in our locally finite, causal, and quantal theory. Our brief addendum is simply
that, prima facie., the inclusion of fermionic matter fields (e.g., electrons), their con-
nections (e.g., Dirac-like operators), as well as their relevant gauge potentials (e.g.,
electromagnetic field) can be straightforwardly implemented ADG-theoretically
as follows:

1. In line with our comments earlier on GPQ, the (states of) other gauge
(boson) and matter (fermion) fields can be modelled by (local) sections of
the relevant line (rank= 1) and vector (rank> 1) (fin)sheaves (here, over
a causet), respectively.

313And at this point we agree with Kostro when he says that. . . In the physical space-time continuum
model in his Special Theory of Relativity and General Theory of Relativity, and in his attempts
to formulate a unitary relativistic field theory, Einstein could not apply the tools and methods of
the contemporary theory of differential manifolds and the structures we use with them, because he
simply did not know them in the form in which they are taught and applied today. . . (Kostro, 2000,
p. 164).

314Not to say “fails miserably.”
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2. Their corresponding (gauge) connections will be modelled by their rele-
vant finsheaf morphisms, and their (free) dynamics by equations involv-
ing (the field strengths of) these morphisms (which dynamics, in turn, by
the very categorical definition of those finsheaf morphisms and the co-
variance of their corresponding field strengths, will be manifestly gauge
Ui -invariant).

3. Interactions between the matter and their gauge fields will be algebraic
expressions involving the relevant finsheaf morphisms coupled to (i.e.,
acting on) the aforesaid (local) sections.

4. In toto, in the finitary case of interest here, 1–3 will be finitistic, causal,
explicitly independent of an external, underlying (i.e., background)C∞-
smooth space-time continuum (i.e., “fully covariant”), “purely gauge-
theoretic,” and “inherently quantum,” as it was the case for the vacuum
gravitational field elaborated in the present paper.

However, for more information about the general ADG-theoretic treatment of
(nongravitational) gauge (i.e., electromagnetic and nonabelian Yang–Mills) theo-
ries and their quantum matter sources, the reader should refer to Mallios (2002).

5.5. Comments on Gel’fand Duality and the Power of Differential Triads

We close the present section by commenting briefly on the notion of Gel’fand
duality—an idea that we repeatedly alluded to and found of great conceptual im-
port in the foregoing. We also illustrate how powerful the basic ADG-theoretic
notion of differential triads is for establishing continuum (“classical”) limits for
a host of (physically) important mathematical structures that we encountered ear-
lier during theaufbauof our locally finite, causal, and quantal vacuum Einstein
gravity.

5.5.1. Gel’fand Duality: From Algebras to Geometric Spaces and Back

By Gel’fand duality we understand the general “functional philosophy” ac-
cording to which, informally speaking,the variable (argument) becomes function
and the function variable (argument). One could symbolically represent this as
follows:

f (x)→ x̂( f ) (146)

For example, in the previous section we noted that our work with (finsheaves of)
incidence algebras associated with (over) the finitary topological posets of Sorkin
is essentially based on Gel’fand duality so that, in discussing inverse and inductive
limits of those posets and (the finsheaves of) their incidence algebras respectively,
we ended up concluding that “space(time)” is categorically or Gel’fand dual to
the physical fields that are defined on“ it.” This is precisely the semantic content
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of (146), but let us explicate further this by starting from the classical and well-
understood theory.

From the classical manifold perspective, Gel’fand duality has an immediate
and widely known application: the (topological) reconstruction of aC∞-smooth
manifoldM as the spectrumMof its algebraC∞(M) of smooth functions (Mallios,
1986). To describe briefly this, letM be a differential manifold andx one of its
points. Consider then the following collection of smoothR-valued functions onM

Ix = {φ : M → R|φ(x) = 0} ⊂ RC∞(M) (147)

It is straightforward to verify thatIx is a maximal ideal ofRC∞(M) and that the
quotient of the latter by the former yields the reals:RC∞(M)/Ix = R. In fact,
in complete analogy to the space Max(C) that we encountered earlier in connec-
tion with Ashtekar and Isham’s commutativeC∗-algebraic approach to the loop
formulation of canonical quantum gravity which employs the Gel’fand–Naimark
representation theorem315—it too a straightforward application of Gel’fand dual-
ity,316 the setSpec[RC∞(M)] ≡M[RC∞(M)] of all maximal idealsIx(x ∈ M) of
RC∞(M) such that

R ↪→ RC∞(M)→ RC∞(M)/Ix (148)

(within an isomorphism of the first term), is called thereal (Gel’fand) spectrum of
RC∞(M). Furthermore, ifRC∞(M)—regarded algebraic geometrically as a com-
mutative ring—is endowed with the so-called Zariski topology (Hartshorne, 1983),
or equivalently, with the usual Gel’fand topology,317 then the “pointwise” map

M 3 x 7−→ Ix ∈M[RC∞(M)] (149)

can be shown to be a homeomorphism between theC0-topology ofM (i.e.,M being
regarded simply as a topological manifold and the Gel’fand (Zariski) topology of
M[RC∞(M)]. In toto, the essential idea of Gel’fand duality here is to substitute the

315It must be noted however thatRC∞(M) is an abeliantopological algebra, not a Banach, let alone
aC∗−, algebra. In point of fact, it is well known thatRC∞(M) is not “normable” or “Banachable”
(Šilov) (Mallios, 1986). On the other hand,CC0(M), for a compact manifoldM , is the “archetypal”
commutativeC∗-algebra—the very one Ashtekar and Isham used in Ashtekar and Isham (1992) to
representC.

316For example, the Gel’fand transform in (139) is a precise mathematical expression of a Gel’fand
duality between the space of connections and the space of loops involved in that theory (Ashtekar
and Isham, 1992; Ashtekar and Lewandowski, 1994). Furthermore, to “justify” the notation in (146),
we note how in (Mallios, 1998) the Gel’fand transform is defined (in the case of a topological algebra
A): let A be a (unital, commutative, locallym-convex) topological algebra, whose spectrum (i.e., the
set of nonzero, continuous, multiplicative linear functionals onA) is M(A). The latter is equipped
with the usual Gel’fand topology relative to which the mapsx̂ : M(A)→ A, with x̂( f ) := f (x),
are continuous. Then, the Gel’fand transform algebra of A is defined asÂ := {x̂ : x ∈ A}.

317The coincidence between the Gel’fand and the Zariski topology onM[RC∞(M)] is due to the fact
thatRC∞(M) is a regular topological algebra (Mallios, 1986).
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(topology of the) underlying space(time) continuum by the (algebras of) objects
(functions/fields) that live on it, and then recover it by a suitable technique, which
we may coinGel’fand spatialization.

As noted before, in the finitary context too, incidence Rota algebras’—ones
taken to model finitary topological spaces, not qausets—Gel’fand duality and,
in particular, the aforesaid method of Gel’fand spatialization was first applied in
Zapatrin (1998) and then further explored in the literature (Raptis and Zapatrin,
2000, 2001). The basic idea there was to substitute the continuous space-time
poset-discretizationsPi of Sorkin in (Sorkin, 1991) by functional-like algebraic
structuresÄi , assign a topology to the latter, and then show how the original finitary
poset topology may be identified with the latter. Thus, in complete analogy to the
classical continuum case above, we used Gel’fand spatialization and

1. Defined “points” in theÄi s as (kernels of finite dimensional) irreducible
(Hilbert space) representations of them—that is, as elements of their prim-
itive (maximal) spectra MaxÄi .

2. Assigned a suitable topology on those primitive ideals.318

3. Identified the Rota topology on the primitive spectra of theÄi s with the
Sorkin topology of thePi s.

That theÄi s are Gel’fand dual to thePi s is concisely encoded in the result quoted
in section 4 that there is a (contravariant) functorial correspondence between the
respective categoriesZ andP.319 In effect, this is precisely the correspondence that
enables one to go from categorical (inverse, projective) limits inP to categorical
co- (direct, inductive) limits in (finsheaves of incidence algebras in)Z mentioned
above.320 Furthermore, it was evident by the very structure of theÄi s (asZ-graded
discrete differential manifolds) that, in thePi -dual picture of incidence algebras,
differential properties of the underlying space (time) could be studied, not just
topological. In other words, in the finitary setting, Gel’fand duality revealed a
differential structure that is encoded in theÄi s which was “masked” by the purely
topological posets of Sorkin. With respect to the classical continuum paradigm of
Gel’fand duality mentioned above, the analogy is clear:

The Pi s are the reticular analogues ofM regarded solely as aC0-manifold, while the
Äi s as the reticular analogues ofM regarded as a differential manifold (Raptis and
Zapatrin, 2000, 2001).

318This is the aforementioned “nonstandard” Rota topology, since it was argued that the Gel’fand (or
the Zariski) topology on MaxÄi is travial (i.e., the discrete—Hausdorff orT2—topology) (Raptis
and Zapatrin, 2000, 2001; Zapatrin, 1998).

319As also mentioned in footnote 162 in subsection 4.3, the correspondence (construction) “finitary
posets”→“incidence algebras” is functorial precisely because thePi s are simplicial complexes
(Raptis and Zapatrin, 2000, 2001; Zapatrin, in press).

320As also noted in footnote 162, precisely because of the functoriality of the correspondence (con-
struction) “finitary posets”→“incidence algebras,” finsheaves in the sense of (Raptis, 2000) exist.
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In fact, precisely because of this suggestive analogy it was intuited in the literature
(Raptis and Zapatrin, 2000, 2001) that at the limit of infinite refinement of the
locally finite coverings of the bounded region ofX not only the topological, but
also the differential structure of the continuum could be recovered. Heuristically
speaking, theÄi s’ revealing of differential geometric attributes suggested to us
that also “change,”321 not only “static” topological or “spatial” relations, could be
modelled algebrically and by finitary means.

Thus, as it was described in the previous section, in the sequel, Gel’fand
duality associating incidence algebras (qausets) to locally finite posets modelling
causets was first exploited in Raptis (2000a) by using Sorkin’s fundamental insight
in Sorkin (1995) that it is more physical to think of a partial order as causality (i.e., as
a “temporal” structure) than as topology (i.e., as a “spatial” structure). Furthermore,
Sorkin’s demand for a dynamical scenario for causets almost mandated to us the
use of sheaf theory—that is, to organize the incidence algebras modelling qausets
to sheaves of an appropriate, finitary kind (Raptis, 2000b). Thus, curved finsheaves
of incidence algebras were born as kinematical spaces for the dynamical variations
of qausets out of blending this causal version of Gel’fand duality with the ideas,
working philosophy and technical panoply of ADG (Mallios and Raptis, 2001, in
press).

The bottom line of all this is that the semantic essence of Gel’fand duality—
i.e., to substitute the topology of the background “space(time)” by the functions that
live on “it’—found its natural home in ADG, which, as we emphasized repeatedly
above, similarly directs one to pay more attention on the objects (fields) that live on
space(time) rather than on space-time per se, independently of whether the latter
is taken to be a reticular base topological space or a continuum. In fact, we may
further hold that

at a differential geometric, not just at a topological, level, ADG in some sense “breaks”
Gel’fand duality,322 since it tells us thatthe differential geometric structure (mechanism)
comes directly from the (algebraic) objects that live (in the stalks of the algebra sheaves
on) space(time), not from the base space(time) itself.323

321For any differential operator “d” models change.
322Gel’fand duality understood here as a “topological symmetry” between the underlying space(time)

and the objects (functions) that dwell on it.
323Thus, when one is interested solely in the topological structure of the continuumM , the afore-

described classical “reconstruction result” of the manifoldM from the algebraRC∞(M) shows
precisely that theC0-topology of M can be recovered fromRC∞(M) by Gel’fand spatialization
while the differential structure inherent inRC∞(M) is not essentially involved. Similarly, at the
finitary level, we saw above how theÄi revealed a rich differential geometric structure that the
purely topological finitary posets of Sorkin in (Sorkin, 1991) simply lacked. Of course, it must
be noted here that since the spectrum ofRC∞(M) can be identified (by Gel’fand duality) withM
set-theoretically (i.e., by a bijective map, which moreover is a homeomorphism) one can also au-
tomatically transfer fromM to M[RC∞(M)] the classical differential (i.e.,C∞-smooth) structure.
But this is another issue. Notwithstanding (first author’s hunch), there might be lurking here an
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All in all, and from a causal perspective, Gel’fand duality, coupled to ADG, allowed
us to “differential geometrize” and, as a result (dynamically), vary Sorkinet al.’s
causets thus bring causet theory, which is abottom-upapproach to quantum gravity,
closer to othertop-downapproaches, such as Ashtekaret al.’s.324

5.5.2. Projective Limits of fcqv-Einstein Equations: The Power
of Differential Triads

We conclude this subsection by presenting an inverse system
←
E of

fcqv-Einstein equations like (124), which produces the generalized classical (i.e.,
∂∞-smooth) vacuum Einstein equations for Lorentzian gravity at the categori-
cal (projective) limit of infinite refinement or localization of the qausets. The
discussion below shows just how powerful the basic ADG-theoretic notion of a
differential triad is, since there is a hierarchy or “tower” of projective/inductive
systems of finitary structures which has at its basis

¿
T := {ETi }—the inverse system

of fcq-differential triads (or its direct version
¿
T.

Anticipating some comments on singularities in the next section, we also
discuss the intriguing result that the∂∞-smooth Einstein equations at the projective
limit hold over a “space-time” that may be infested by singularities—in other
words,the gravitational law does not “break down” at the lattersince, anyway,
an fcqv-version of it appears to hold for every member of the system

←
E and the

latter are structures reticular, “singular,” and quite remote from the featureless
smooth continuum. On the contrary, singularities may be incorporated into (or
absorbed by) the structure sheaf of theC∞-smooth differential algebras so that
the generalized differential geometric mechanism continues to hold over them and
the theory still enables one to perform calculations in their presence325 (Mallios,
2002; Mallios and Rosinger, 1999, 2001).

But let us present straight away the aforesaid hierarchy of projective/inductive
families of finitary structures, commenting in particular on the projective system
←
E mentioned above. The diagram below as well as the discussion that follows
it will also help us recapitulate and summarize certain facts about the plethora
of inverse and direct systems we have encountered throughout the present

appropriaterepresentation theoremthat would close the circle.
324This “bottom-up” and “top-down” distinction of the approaches to quantum gravity is borrowed

from Dowker (in press). In relation to the three categories of approaches mentioned in the prologue,
category 1 may be thought of as consisting of top-down approaches, while both categories 2 and 3
as consisting of bottom-up approaches.

325In the same way that ADG enabled us earlier to “see through” the fundamental discreteness of the
base causets and write a perfectly legitimatedifferential (Einstein) equation over them, in spite of
them.
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paper.

The 11-storeys’ tower of finitary inverse/direct systems

Level 7: Inverse system
←
Z of “fully covariant” fcqv− path integrals

↑|
Level 6: Inverse system

←
E of fcqv− E− L − fields and their curvature spaces

↑|
Level 5: Inverse system

←
E of fcqv− Einstein equations

↑|
Level 4: Inverse system

←
M of (self− dual) fcqv− moduli spaces

↑|
Level 3: Inverse system

←−
EH of (self− dual) fcqv− Einstein− Hilbert action functionals

↑|
Level 2: Inverse system

←
A of affine spaces of (self− dual) fcqv− dynamos

↑|
Level 1: Inverse system

←
G of principal finsheaves and their (self− dual) fcqv− dynamos

↑|
Level 0: Inverse− direct system

¿
T of fcq− differential triads

↑|
Level−1: Inverse system

←
S of finsheaves of continuous functions

↑|
Level−2: Direct system

←
R of incidence Rota algebras or qausets

↑|
Level−3: Inverse system

←
P of finitary substitutes or causets

(150)

Short stories about the 11 storeys
• Levels−3 to−1: The first three “underground levels” can be thought of

as assembling the fundamental one at level zero. Indeed, as explained in
section 4, each memberEPi , of

←
P (now causally interpreted as a causet)

comprises the base causal-topological space of each fcq-differential triad
ETi , in

¿
T bearing the same finitarity index (level−3). Correspondingly (by

Gel’fand duality), each member (qauset)EÄi of
→
R comprises the reticu-
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lar coordinate algebras, the bimodules of differentials over them and the
differential operators linking spaces of discrete differential forms of con-
secutive grade (level−2) that, when organized as finsheaves (level−1)
over the base causets of level−3, yield the inverse-direct system

¿
T of

fcq-differential triads of level 0.
• Level 0: This is the fundamental, “ground level” of the theory in the sense

that all the inverse systems at levels≥ 1 have at their basis
¿
T, as follows.

• Level 1: The inverse system
←
G of principal Lorentzian finsheavesEP↑i of

(reticular or-thochronous spin-Lorentzian or causal symmetries of) qausets
and their nontrivial (i.e., nonflat, as well as self-dual) fcqv-dynamosED(+)

i

can be obtained directly from
¿
T by (sheaf–theoretically) localizing or

“gauging” qausets in the stalks of the finsheaves in the corresponding (i.e.,
of the same finitarity index) fcq-triadsETi ∈

À
J (Mallios and Raptis, 2001).

• Level 2: The projective system
←
A of affine spacesEA(+)

i of (self-dual)

fcqv-dynamosED(+)
i on the EP↑i s (or better, on theEE↑i s associated with the

EP↑i s is can be obtained straightforwardly from
←
G.

• Level 3: The inverse system
←−
EH of (self-dual) fcqv-Einstein-Hilbert ac-

tion functionals can be easily obtained from
←
A if we recall from (125, 126)

the finitary version
−→
EH

(+)
i of the ADG-theoretic definition of the E-H action

functionalEH in (65, 66).
• Level 4: Similarly to

←−
EH, the inverse system

←
M of (self-dual) fcqv-

moduli spacesEM(+)
i in (120) can be obtained from the inverse system

←
A

memberwise, that is to say, by quotienting eachEA(+)
i in

←
A by the automor-

phism group
−→
Auti EE↑i of the causon.

• Level 5: The projective system
←
E of fcqv-E-equations as in (124) is the

main one we discuss here. It can be readily obtained, again memberwise
from

←−
EH, by varying each

−→
EH

(+)
i in the latter collection with respect to the

(self-dual) fcqv-dynamoED(+)
i in each member of

←
G, as in (the finitary ver-

sion of) (67–70). The important thing to mention here is that the inverse,
continuum, “correspondence limit” (Mallios and Raptis, 2001, in press;
Raptis and Zapatrin, 2000, 2001) of these fcqv-Eequations yields the “gen-
eralized classical” vacuum Einstein equations for Lorentzian gravity on the
∂∞-smooth space-time manifoldM which (i.e., whose coordinate structure
sheaf∂∞M ), prima facie, may have singularities, other general pathologies
and anomalies of all sorts. We thus infer that, by ADG-theoretic means,
we are able to write the law of gravitation over a space-time that may be
teeming with singularities. In other words, and in characteristic contradis-
tinction to the classicalC∞-manifold-based general relativity,the Einstein
equations do not “break down” near singularities, and the gravitational
field does not stumble or “blow up” at them. Rather, it evades them, it
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“engulfs” or “incorporates” them them,326 it holds over them and, as a
result, we are able to calculate over them(Mallios, 2002).327 Indeed, it has
been shown (Mallios, 2001) that with the help of ADG one can write the
gravitational vacuum Einstein equations over the most pathological, espe-
cially when viewed from theC∞-perspective, space(time)M—one whose
structure sheafAM consists of Rosinger’s differential algebras of general-
ized functions which, as noted earlier, have singularities on arbitrary closed
nowhere dense subsets ofM or even, more generally, onarbitrary sets with
dense complements(Mallios and Rosinger, 1999, 2001; Rosinger, 2002).
• Levels 6 and 7: We will briefly comment on the last two remaining pro-

jective systems,E and
←
Z. The first is supposed to consist of (self-dual) fcqv-

E-L
fields (EE↑i , ED(+)

i ) and their corresponding curvature space pentads (EA i , E∂i ≡
Ed0
i , EΩ1

i , Edi ≡ Ed1
i , EΩ2

i ).328 In line with footnote 61, we suppose that these
fcqv-curvature spaces and the fcqv-E-spacesEPi supporting them are the
“solution spaces” of the corresponding equations in

←
E . At the same time,

it must be noted that this “gedanken supposition’—that is, that curvature
spaces refer directly to solutions of the fcqv-E-equations—is made to fur-
ther emphasize the point made at the previous level, namely, that in case
one obtains an (EE↑i , ED(+)

i ) (and therefore its curvatureER(+)
i ( ED(+)

i )) that is
a solution of (124), then the projective,∂∞-continuum limit of these solu-
tions may be infested by singularities,but still be a legitimate solution of
(i.e., satisfy) the smooth vacuum Einstein equations and the singularities
did not in any way “inhibit” the physical law or our calculations with it.329

We can summarize all this with the following statement quoted almost ver-
batim from Mallios (2002):A physical law cannot be dependent on, let
alone be restricted by, singularities.330 This may be perceived as further
support to Einstein’s doubts in Einstein (1956):

It does not seem reasonable to me to introduce into a continuum theory points
(or lines etc.) for which the field equations do not hold.331

326This is so because the observable the gravitational field strength is anA-morphism (i.e., it respects
the generalized arithmetics inA), and the generalized coordinate algebras in the structure sheaf may
include arbitrarily potent singularities.

327We are going to comment further on this in the next section.
328Which in turn, as noted in subsection 5.1, makes the base causetEPi anfcqv-E-space.
329These solutions are, in fact, the results of our calculations in the presence of the singularities

incorporated in our own arithmeticsA!
330Equivalently,Nature has no singularities(see next section).
331And Einstein’s doubts are remarkable indeed if one considers that they are expressed in the context

of classical field theory on aC∞-smooth space-time manifoldM with the unavoidable singularities
that infest its coordinate structure sheafC∞M .
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As for the inverse system
←
Z whose members are heuristic covariant fcqv-

path integralsEZi à la (128), our comments for its projective continuum
limit must wait for results from the ADG-theoretic treatment of func-
tional integration in gauge theories currently under development in Mallios
(manuscript in preparation). Our hunch is that, if the fcqv-E-H-action

−→
EHi

involved in the integrand ofEZi is taken to be a functional of the self-dual
fcqv-dynamo ED+i (write:

−→
EH
+
i and,in extenso, EZ+i ), the continuum limit

should yield the generalizedC∞-version of theC∞-path integral involving
the exponential of the smooth analogue of the smooth Asthekar actionSash

in (129).

6. EPILOGUE: THE WIDER PHYSICAL SIGNIFICANCE OF ADG

In this concluding section we discuss the wider physical implications of our
work here and of ADG in general. We concentrate on two aspects: on the one hand,
how ADG may potentially help us evade the notoriousC∞-singularities, thus we
prepare the ground for a paper that is currently in preparation (Mallios and Raptis
manuscript in preparation), and on the other, how ADG points to a “relativized”
notion of differentiability.

6.1. Towards EvadingC∞-Smooth Singularities

We commence our brief comments on smooth singularities, anticipating a
more elaborate treatment in Mallios and Raptis (manuscript in preparation), with
the following two quotations of Isham:

. . .A major conceptual problem of quantum gravity is. . . the extent to which classical
geometrical concepts can, or should, be maintained in the quantum theory. . . (Isham,
1992)

[principally because]332

. . .The classical theory of general relativity is notorious for the existence of unavoidable
space-time singularities. . . (Isham, 1993)

which are completely analogous to the two quotations in the beginning of the paper.
For instance, one could combine Feynman’s and Isham’s words in the following
way:

one cannot apply classical differential geometry in quantum gravity, because one gets
infinities and other difficulties.

Indeed, it is generally accepted that if one wishes to approach the problem
of quantum gravity by assuming up front that space-time is (modelled after) a

332Our addition to link the two together.
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C∞-smooth manifold,333 one’s theory would be plagued by singularities well before
quantization proper becomes an issue—that is, long before one had to address the
problem of actually quantizing the classical theory. In other words, the problem
of singularities is already a problem of the classical theory of gravity that appears
to halt the program of quantizing general relativity already at stage zero. Even if
one turned a blind eye to the singularities of the classical theory and proceeded
to tackle quantum general relativity as another quantum field theory based again
on the classical space-time continuum, one would soon encounter gravitational
infinities that, although milder and less robust than the singularities of the classical
theory, they are strikinglynonrenormalizable334 in contradistinction to the infinities
of the quantum field theories of gauge matter which are perturbatively finite.
Altogether, it is theC∞-manifold M (with its structure ringC∞(M) of infinitely
differentiable functions) employed by the usual differential geometry supporting
both the classical and the quantum general relativity which is responsible for
the latter’sunavoidable space-time singularitiesand unremovable infinities, and
which makes classical (differential) geometric concepts and constructions appear
to be prima facie inapplicable in the quantum deep.

On the other hand, the word “unavoidable” in Isham’s quotation (Isham,
1993) above calls for further discussion, because it goes against the grain of the
very basic didactics of ADG vis-`a-vis singularities (Mallios, 2001a, 2002; Mallios
and Rosinger, 2001). It now appears clear that the singularities of general relativity
come from assuming up frontC∞M as the structure sheafA of “coefficients” over
which one applies the classical differential geometric constructions to classical
gravity. Since the differential pathologies are due toC∞(M), the whole enterprize of
applying (differential) geometric concepts to classical and, in extenso, to quantum
gravity, seems to be doomed from the start. On the other hand, ADG has taught
us precisely thatsingularities are indeed avoidable if one uses a different and
more “suitable” to the physical problem at issue structure arithmeticsA thanC∞M
(Mallios, 1998b, 2001a, 2002; Mallios and Rosinger, 2001). Moreover, ADG has
time and again shown that the “intrinsic mechanism” of the classical differential
geometry (AX ≡ C∞X )) can be carried over, intact, to a generalized differential
geometric setting afforded by a general structure sheafA very different fromC∞M
(Mallios, 2001a; Mallios and Raptis, in press; Mallios and Rosinger, 1999, 2001).
SinceA can be taken to include arbitrary singularities, even of the most extreme
and classically unmanageable sort (Mallios and Rosinger, 1999, 2001; Rosinger,
2002), it follows thatthe said differential mechanism is genuinely independent of
singularities. That is to say,

not only we can avoid singularities ADG-theoretically, but we can actually absorb or
“engulf” them intoA (provided of course these algebras are “appropriate” or “suitable”
for serving as the structure arithmetics of the abstract differential geometry that has

333Such an approach would belong to the “calculus conservative” category1mentioned in the prologue.
334Essentially due to the dimensionfulness of Newton’s gravitational constant.
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been developed)335 and, as a result, calculate or perform our (differential geometric)
constructions over them, in spite of their presence which thus becomes unproblematic
(Mallios, 2002).336

These remarks bring to mind Einstein’s “apologetic confession”337:

. . .Adhering to the continuum originates with me not in a prejudice, but arises out of the
fact that I have been unable to think up anything organic to take its place. . . (Einstein,
1949),

in the sense that Einstein’s commitment to the continuum and, in effect, to the
classical differential geometry supporting his theory of gravitation, would not
have been as strong or as faithful338 had there been an alternative (mathemat-
ical) scheme—perhaps one of a strong algebraic character if one considers his
life-long quest (in view of quantum theory and the pathologies of the continuum)
for an entirely algebraic description of reality339—that worked as well as theC∞-
differential geometry, yet, unlike the latter, was more algebraic, not dependent on a
dynamically inactive space-time continuum and, perhaps more importantly, it was
not assailed by singularities, infinities, and other “differential geometric diseases”
coming from the a priori assumption of the smooth background manifold.340 We
contend that ADG is a candidate for the algebraic theory that Einstein had envi-
sioned, for, as we saw here and in a series of papers (Mallios and Raptis, 2001,
in press; Mallios and Rosinger, 1999, 2001), one can carry out all the differential
geometric constructions that are of use in the usual differential geometry support-
ing general relativity with the help of suitable vector and algebra sheaves over
arbitrary base spaces—even over ones that are extremely singular and reticular
when viewed from the perspective of the smooth continuum. Thus, in effect,

335That is to say, they can provide us with the basis for defining differentials, connections, vectors,
forms, and higher order⊗A -tensors, as well as the rest of the “differential geometric apparatus” in
much the same way thatC∞M does, supported by the smooth manifoldM , in the classical theory.

336In a straightforward way, ADG shows that singularities can be integrated into the structure algebra
sheafA of our own “generalized measurements,” “arithmetics,” or “coefficients,” thus they should
never be regarded as problems of Physis. In other words,Nature has no singularities, rather, it is
our own models of Her that are of limited applicability and validity(e.g., in the classical case this
pertains to theC∞-smooth manifold modelM for space-time, the structure sheafA ≡ C∞M that it
supports, and theC∞-singularities that the latter hosts).

337Which we encountered earlier in subsection 5.4.1. We too apologize for displaying this quotation
twice, but we find it very suggestive and relevant to one of the main points that we make in the present
paper, namely, thatif Einstein had a way(i.e., a theory and a working method)of doing field theory—
and differential geometry in general—independently of the pathological and unphysical space-time
continuum, and, moreover, by finitistic–algebraic means (in view of the quantum paradigm), he
would readily abandon theC∞-smooth manifold(see more remarks shortly). We claim that ADG,
especially in its finitary guise here, is such a theory.

338Quite remarkably though, considering that general relativity enjoyed numerous successes and was
experimentally confirmed during Einstein’s life.

339See the three quotations in subsection 5.1.1.
340In these terms we may understand the epithetorganicabove.
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according to ADG (the intrinsic or inherent mechanism of), differential geometry has
nothing to do with the background space so that, in particular, it is not affected by the
singularities of the manifold (Mallios, 2002).

For the sake of completeness, we bring to the attention of the reader two
examples from the physics literature, one old the other new, of theories that evade
singularities in a way that accords with the general spirit of ADG described above.

• Evading the exterior Schwarzschild singularity (old). The paradigm that
illustrates best how a change in the coordinate structure functions or gen-
eralized arithmeticsA may effectively resolve a singularity is Finkelstein’s
early work on the gravitational field of a point particle (Finkelstein, 1958).
It was well known back then that the Schwarzschild solution of the Einstein
equations for the gravitational field of a point massmhad two singularities:
an exterior one, at distance (radius)r = 2 m from m, and an interior right at
the point mass (r = 0). What Finkelstein was able to show is that by an ap-
propriate change of coordinates341—the so-called Eddington–Finkelstein
frame, the exterior singularity is “transformed away” revealing that the
Schwarzschild space-time acts as a unidirectional, “semipermeable,” time-
asymmetric membrane allowing the outward propagation of particles and
forbidding the inward flux of antiparticles. For this, ther = 2 m singularity
was coinedcoordinate singularityand was regarded as being only a “vir-
tual” anomaly—merely an indication that we had laid down inappropriate
coordinates to chart the gravitational space-time manifold.

On the other hand, it was also realized that the interior singularity
could not be gotten rid of by a similar coordinate change,342 thus it was
held as being a “real” or “ true” singularity—an alarming indication that
general relativity is out of its depth when trying to calculate the gravitational
field right on its point source. Thus, ever since Finkelstein’s result, it has
been hoped that only a genuine quantum theory of gravity will be able
to deal with the gravitational field right at its source much in the same
way that the quantum theoresis of electrodynamics (QED) managed, even
with just the theoretically rather ad hoc method of “subtracting infinities”
(renormalization),343 to do meaningful physics about the photon radiation
field at its source—the electron.

According to this rationale however, notwithstanding the perturba-
tive nonrenormalizability of gravity due to the dimensionality of Newton’s

341However, always in the context of a smooth space-time manifoldM (i.e., still with the new coordinate
functions being members ofA ≡ C∞M ).

342Again though, still by remaining within theC∞-smooth manifold model.
343It is well known, for instance, that Dirac expressed many times his dissatisfaction about the renor-

malization program with its mathematically not well-founded and aesthetically unpleasing recipes:
Sensible mathematics involves neglecting a quantity when it turns out to be small—not neglecting
it just because it is infinitely great and you do not want it(Dirac, 1978).
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constant, it has become obvious that physicists have devotedly committed
themselves so far to viewing the space-time point manifold as something
physically “real” in the sense that any of its points is regarded as poten-
tially being the host of a noncircumventable byC∞-means singularity for a
physically important smooth field. That is, instead of reading Finkelstein’s
result in a positive way, as for instance in the following manner `a la ADG,

when encountering any singularity, in order to “resolve” it and be able to
cope with (i.e., calculate over) it, one must look for an “appropriate” structure
algebra of coordinates that incorporates or “engulfs” it (Mallios, 2002) and
then one has to give a cogent physical interpretation of the new picture,344

physicists try instead to retain as much as they can (admittedly, by ingenious
methods at times) the differential space-time manifoldM , its structure co-
ordinatesA ≡ C∞M and its structure symmetriesG ≡ Diff( M) as if they
were physically real, and at the same time quite falsely infer that the mech-
anism of (classical) differential geometry does not apply over singularities
and, in extenso, in the quantum deep.345 All in all, it is as if

1. The smooth space-time manifold is a physically real substance
to be retained by all means.

2. TheC∞-singularities are also physically real as they are Na-
ture’s (i.e., the space-time manifold’s) own diseases—they are
real physical problems, “intrinsic” pathologies of Nature (space-
time).

3. The (classical) differential calculus and the dynamical laws (e.g.,
the Einstein equations) supported by it break down at a singularity.

4. To retain the space-time manifold so that one can continue do-
ing calculus (i.e., apply the usual differential geometric ideas
and techniques to physical situations—as it were, “continue the
validity of physical laws” and, in fact,calculate), singulari-
ties must be isolated and then somehow removed or “surgically

344The word “appropriate” meaning here in the manner of ADG: a (differential) algebra of coordinates
that integrates the singularity (as a generalized coefficient) yet it is still able to provide us with
the basic differential mechanism we need to set up the relevant dynamical equations over it and
calculate with them.

345Such an attitude was coined in Mallios and Raptis (in press) “C∞-smooth manifold conservative”
and it is the spirit underlying category 1 of approaches to quantum gravity mentioned in the Pro-
logue. For instance, physicists try to isolate and surgically cut out of the space-time manifold the
offensive singular points, thus continue the usualC∞-differential geometric practices in the remain-
ing “effective manifold.” (In a sense, they “artificially” remove, by hand and force as it were, the
“points, lines etc. for which the field equations do not hold,” as we read in Einstein’s quotation at the
end of the last section.) Current physics regards singularities as an incurable disease of differential
geometry. In contradistinction, ADG maintains that they are unmanageable indeed byC∞-means,
but also, more importantly, that the (algebraic in nature) differential mechanism is not affected by
them, so that one should be able to continue “calculating” in their presence.
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excised” from the manifold, leaving back an effective space-time
manifold free of pathologies.

At the same time, a natural follow-up of this line of thought is the follow-
ing basic hunch shared nowadays by almost all the workers in the field
of quantum gravity (string theorists aside) looking for alternatives to the
space-time continuum of macroscopic physics,346

at strong gravitational fields near singularities, or at Planck distances, the
conventional image of space-time as a smooth continuum breaks down and
should somehow give way to something “discrete,” “reticular,” “inherently cut-
off,” and this should be accompanied by a radical modification of the classical
differential geometry used to describe classical, “low energy” Einstein gravity
on M . At the core of this philosophy hibernates the idea that the notion of
space-time—be it discrete or continuous—must be retained at any cost, and
that our methods of calculation must be modified accordingly, as if all our
constructions must be tailor-cut to suit (or better, derive from) a pre-existent
background geometrical space (time).347

• Passing through the initial singularity by ekpyrosis (new).Together with the
interior Schwarzschild singularity, there is another one, perhaps even more
famous, which is a direct consequence of Einstein’s general theory of rela-
tivity, namely, theinitial Big Bang singularitymarking the beginning of an
expanding Universe in the most successful of modern cosmological mod-
els. The initial singularity, like the aforementioned interior Schwarzschild
one, is regarded as a fundamental, “true” space-time singularity and physics
during the Planck epoch (0–10−42s) is anticipated to be described consis-
tently by the ever elusive quantum theory of gravity. However, recently, in
the context of the string, membrane andM-theory approach to quantum
gravity, Khouryet al. have proposed a scenario according to which one
can actually evade the initial singularity—as it were, do meaningful pre-
Big Bang era physics (Khouryet al., 2001, 2002; Steinhardt and Turok,
2002). Without going into any technical details, we just note that their pro-
posal basically involves a (coordinate) field transformation,348 completely
analogous to Finkelstein’s frame change in (Finkelstein, 1958),349 which
enables one to go through the initial singularity as if it was a diaphanous
membrane. Thus, even the most robust and least doubted singularity of all,

346To name a few alternative schemes to the space-time continuum and to the classical theory of gravity
that it supports simplicial (Regge) gravity, spin-networks, causet theory, etc.

347In spite of Einstein’s serious doubts about the physical meaningfulness of the concepts of space and
time mentioned earlier. Even more remarkably, in subsection 4.2.2 we mentioned how Isham has
contemplated changing drastically the standard quantum theory itself to suit noncontinua space-time
backgrounds, such as causal sets for example.

348Still assuming howeverC∞-smoothness for the various fields involved (i.e.,A ≡ C∞X in our lan-
guage; whereX is a higher dimensional differential manifold, e.g., a Riemann hypersurface).

349Neil Turok in private communication (Turok, 2001).
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the Big Bang, has been shown (again, simply by the use ofC∞-means!) to
be no problem, no pathology of Nature at all, and that a rich physics is to
be discovered even for the period “before time began.”

6.2. The Relativity of Differentiability

In connection with our brief remarks onC∞-singularities above, we close the
present paper with further remarks on the opening two quotations of Feynman and
Isham. In particular, in line with the discussion of “gravity as a gauge theory” in
section 3, we would like to emphasize that,

1. while we share Feynman’s scepticism about the metric-formulation of gen-
eral relativity350 and his hunch that there is a fundamental gauge invariance
lurking there,

2. we do not share his apparently “negative” stance towards differential ge-
ometry. Of course, his position is understandable to the extent that he is
referring to (and he is actually referring to!) the usual calculus onC∞-
manifolds, but this is precisely the point of ADG:

one should not question the “differential mechanism” per se when encoun-
tering singularities, infinities and other pathologies in classical differential
geometry.For, loosely speaking, “the mechanism is fine,” as it works, that is,
as one can actually do differential geometry in principle over any space, no
matter how singular. Rather, one should question theC∞-smooth manifold
M itself whose only operative role in the said “differential mechanism” is
to provide us with the algebras (by no means unique or “preferred” in any
sense351) C∞(M) of infinitely differentiable functions (and the classical dif-
ferential geometric mechanism supported by them)which, in turn, are the very
hosts of the aforementioned singularities and the other “classical differential
geometric diseases.”

Since Feynman’s stance appears to accord with Isham’s,352 our reply to
the latter is similar; expressed somewhat differently.

3. we seem to be misled by the classical theory—theC∞-differential
geometry—into thinking that the various “differential geometric

350After all, the metric, as well as the space hosting it, are our own ascriptions to Physis; they are not
Nature’s own(recall Einstein’s quotation (Einstein, 1949) in subsection 5.1.1). ADG emphasizes
that theA-metric ρ, as the term suggests, is crucially dependent on our own measurements or
“generalized arithmetics” inA, so that, like the singularities of the previous subsection, it is not
Nature’s own property:we ascribe it to Her!(see footnote 20). This is in line with quantum theory’s
basic algebraico–operationalist philosophy (and goes against the Platonic realist ideal of classical
physics) according to which,quantum systems do not possess physical properties of their own, that
is, independently of our acts of observing them. These acts, in turn, can be suitably organized into
algebras of physical operations, generalized “measurements” so to speak, on the quantum system.

351See theprinciple of relativity of differentiabilityto follow shortly.
352See the two quotations opening the paper.
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pathologies” are faults and shortcomings of thedifferential mechanism,
thus also infer that differential geometry does not apply in the quantum
deep. As noted earlier, it is perhaps habit or long-time familiarity with
smooth manifolds and their numerous successful applications to physics,
including general relativity and the quantum field theories of matter, that
makes us think so,353 for ADG has shown us thatthe differential mecha-
nism still applies effectively over any space—even over ones that are much
more singular (in a very straightforward, but technical, sense)(Mallios
and Rosinger, 1999, 2001; Rosinger, 2002),or even over ones that are
manifestly discontinuous and more quantal(Mallios and Raptis, 2001, in
press),than the “featureless” differential manifold. On the other hand,
ADG has also shown us that the “differential diseases” are exactly due to
our assuming up front a differential manifold background space to sup-
port our differential geometric constructions, thus agreeing in that sense
with Feynman and Ishan. However, in contradistinction to them,in view of
ADG, one does not need the differential manifold in order to differentiate.

All in all, ADG suggests thatto heal the differential pathologies, one
must first kick theC∞-smooth manifold habit.

Thus, continuing the “sloganeering” with which we concluded
(Mallios and Raptis, 2002)354 and expressed slogans 1–3 in the present
paper, we may distill the remarks above to the following “relativity of
differentiability” principle.

4. The differential space-time manifold by no means sets a preferred (i.e.,
unique) frame (i.e., model) for differentiating physical quantities. Dif-
ferential equations, modelling physical laws that obey the generalized
principle of locality,355 can be also set up independently of theC∞-
smooth manifold—in fact, as we saw in this paper, regardless of any back-
ground (base) space (time). Since we have repeatedly argued and witnessed
in this paper thatdifferentiability derives from the stalk(i.e., from the

353See quotation of Einstein concluding the paper below. At this point, to give an indication of this
attitude—i.e., of the persistent, almost “religious” adherence of some physicists to the space-time
manifold—we may recall Hawking’s opening words in Hawking and Penrose (1996) where he
discusses singularities in general relativity vis-`a-vis quantum gravity:. . .Although there have been
suggestions that space-time may have a discrete structure, I see no reason to abandon the continuum
theories that have been so successful. General relativity is a beautiful theory that agrees with every
observation that has been made. It may require modifications on the Planck scale, but I don’t think
that will affect many of the predictions that can be obtained from it. . . This appears to be the
manifold-conservativestance against singularities and quantum gravity par excellence.

354Especially, see slogan 2 there.
355Which maintains that physical laws should be modelled after differential equations that depict

the cause-and-effect nexus between “infinitesimally” or “smoothly separated” (“C∞-contiguous”)
events—arguably what one understands by “differential locality” (i.e., local causality in theC∞-
smooth space-time manifold) (Mallios and Raptis, 2001; Raptis and Zapatrin, 2001).
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algebraic objects dwelling in the relevant sheaves) andnot from the un-
derlying space(time), we may say that the “absolute” and fixed differ-
entiability of the smooth space-time manifold, which for Einstein rep-
resented the last relic of an inert, “dynamically indifferent” ether-like
substance (Einstein, 1983b, 1991) that “acts, but is not acted upon” (Ein-
stein, 1956),356 “ relativized” with respect to the algebraic objects that live
on whatever “space-time”357 we have used as a base space “scaffolding” to
localize sheaf–theoretically those physically significant algebraic objects.
We may figuratively refer to the abstract algebraico–sheaf–theoretic dif-
ferentiability properties (of the system “quantum space-time”—or better,
of the very dynamical quanta in which that “space-time” is inherent) as
“differentiables,” in analogy to the standard algebraically represented “ob-
servables” or even the “beables” of the usual (material) quantum physical
systems. Thus, to wrap things up,

“Differentiables” are properties of (i.e., derive from) the algebraic structure of
the objects (sections of algebra sheaves) that live on “space (time),” not from
“space (time)” itself which, especially in its classicalC∞-smooth manifold
guise, is doubtful whether it has any physical significance at all (Butterfield
and Isham, 2000; Isham, 1992, 1993, 2002; Mallios, 2002; Mallios and Raptis,
2001, in press; Raptis and Zapatrin, 2000, 2001).

356More precisely, Einstein’s doubts about the physical reality of the absolute, dynamically passive
space-time continuum of the (special) theory of relativity were expressed in (Einstein, 1956) (p. 55)
as follows: “. . . In this latter statement[i.e., that from the standpoint of special relativitycontinuum
spatii et temporis est absolutum] absolutum means not only ‘physically real,’ but also ‘independent of
its physical properties, having a physical effect, but not itself influenced by physical conditions’ . . . ”
Indeed so, in the special theory of relativity the metrical properties of the space-time continuum
were not relativized, so that the metric was not regarded as a dynamical variable. The general theory
of relativity viewed the metric—“the field of locality” (local causality or local chronology)—as a
dynamical variable and effectively evaded the aforesaidtemporis est absolutum, but it must again
be emphasized here that general relativity in a sense came short of fully relativizing (i.e., regarding
as dynamical variables) the whole panoply of structures (or “properties” in Einstein’s words above)
that the space-time continuum comes equipped with. For instance, the continuum’s structures which
are arguably “deeper” than the metrical, such as the topological and the differential, are simply left
absolute, nonrelativized (nondynamical), “fixed by the theorist once and forever as the differential
manifold background.” As noted repeatedly earlier and in previous works (Mallios and Raptis,
2001, in press; Raptis and Zapatrin, 2000, 2001), in a genuinely (fully) quantum theoresis of space-
time structure and dynamics even the topological and the differential structures are expected to be
subjected to relativization and dynamical variability—thusbecome “observables,” “in principle
measurable” dynamical entities. For it has been extensively argued thatthe common denominator
of both relativity (relativization) and the quantum (quantization) is dynamics (dynamical variation)
(Finkelstein, 1996). So that “all is quantum” (see footnote 6) means essentially thatall is dynamical.
But then, if everything is in constant flux in the quantum deep,whence space?, and,mutatis mutandis,
whence time?, Totally, is there any space-time at all?, and even more doubtfully,whence the space-
time manifold?.

357The inverted commas over “space-time” remind one of the physically dubious (especially at Planck
scale) significance of this concept.
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However, since we have repeatedly quoted above Einstein’s doubts about
the smooth geometric space-time continuum vis-`a-vis singularities and the
quantum, we would like to end the paper with another telling quotation
of his which sensitizes us to the fact that successful, therefore a priori
assumed and habitually or uncritically applied, theoretical concepts and
mathematical structures,358 can exercize so much power on us that they of-
ten mask their true origin and pragmatic usefulness—i.e., thatthey simply
are our own theoretical constructs of limited applicability and validity—
and mislead us into thinking that they are “unavoidable necessities” and,
what’s worse, Nature’s own traits:

. . .Concepts which have proved useful for ordering things easily assume so
great an authority over us, that we forget their terrestrial origin and accept them
as unalterable facts. They then become labelled as “conceptual necessities,”
“a priori situations,” etc. The road of scientific progress is frequently blocked
for long periods by such errors. It is therefore not just an idle game to exercise
our ability to analyse familiar concepts, and to demonstrate the conditions on
which their justification and usefulness depend, and the way in which these
developed, little by little. . . (1916) (Einstein, 1990)
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